(Press-News.org) Sometimes simplicity is best. Two Northwestern University researchers have discovered a remarkably easy way to make nanofluidic devices: using paper and scissors. And they can cut a device into any shape and size they want, adding to the method's versatility.
Nanofluidic devices are attractive because their thin channels can transport ions -- and with them a higher than normal electric current -- making the devices promising for use in batteries and new systems for water purification, harvesting energy and DNA sorting.
The "paper-and-scissors" method one day could be used to manufacture large-scale nanofluidic devices without relying on expensive lithography techniques.
The Northwestern duo found that simply stacking up sheets of the inexpensive material graphene oxide creates flexible "paper" with tens of thousands of very useful channels. A tiny gap forms naturally between neighboring sheets, and each gap is a channel through which ions can flow.
Using a pair of regular scissors, the researchers simply cut the paper into a desired shape, which, in the case of their experiments, was a rectangle.
"In a way, we were surprised that these nanochannels actually worked, because creating the device was so easy," said Jiaxing Huang, who conducted the research with postdoctoral fellow Kalyan Raidongia. "No one had thought about the space between sheet-like materials before. Using the space as a flow channel was a wild idea. We ran our experiment at least 10 times to be sure we were right."
Huang is an assistant professor of materials science and engineering and the Morris E. Fine Junior Professor in Materials and Manufacturing in the McCormick School of Engineering and Applied Science.
"Many people have studied graphene oxide papers but mainly for their mechanical properties or for making graphene," Huang said. "Here we show that graphene oxide paper naturally generates numerous nanofluidic ion channels when layered."
The findings are published in the Journal of the American Chemical Society.
To create a working device, the researchers took a pair of scissors and cut a piece of their graphene oxide paper into a centimeter-long rectangle. They then encased the paper in a polymer, drilled holes to expose the ends of the rectangular piece and filled up the holes with an electrolyte solution (a liquid containing ions) to complete the device.
Next they put electrodes at both ends and tested the electrical conductivity of the device. Huang and Raidongia observed higher than normal current, and the device worked whether flat or bent.
The nanochannels have significantly different -- and desirable -- properties from their bulk channel counterparts, Huang said. The nanochannels have a concentrating effect, resulting in an electric current much higher than those in bulk solutions.
Graphene oxide is basically graphene sheets decorated with oxygen-containing groups. It is made from inexpensive graphite powders by chemical reactions known for more than a century.
Scaling up the size of the device is simple. Tens of thousands of sheets or layers create tens of thousands of nanochannels, each channel approximately one nanometer high. There is no limit to the number of layers -- and thus channels -- one can have in a piece of paper.
To manufacture very massive arrays of channels, one only needs to put more graphene oxide sheets in the paper or to stack up many pieces of paper. A larger device, of course, can handle larger quantities of electrolyte.
INFORMATION:
The paper is titled "Nanofluidic Ion Transport through Reconstructed Layered Materials."
END
An international research team including scientists from the University of Toronto's Faculty of Medicine has discovered a link between a mutation in an immune system gene and Alzheimer's disease.
Using data from 25,000 people, researchers from the Faculty of Medicine and University College London's Institute of Neurology discovered that a rare genetic mutation in the TREM2 gene — which helps trigger immune system responses — is also associated with increased risk of Alzheimer's. The discovery supports an emerging theory about the role of the immune system in the disease. ...
Noting that active-duty servicewomen have higher rates of unintended pregnancy than the general population and lower reported contraception use, one researcher at Women & Infants Hospital is suggesting the answer might be a review of the health care offered to females in the military and veterans.
Vinita Goyal, MD, MPH, published the study "Unintended pregnancy and contraception among active-duty servicewomen and veterans" in a recent issue of the American Journal of Obstetrics & Gynecology. As part of her research, conducted in cooperation with the Veteran's Administration ...
Georgia Tech, along with partner research organizations on the Keeneland Project, including the University of Tennessee-Knoxville, the National Institute for Computational Sciences and Oak Ridge National Laboratory, announced today that the project has completed installation and acceptance of the Keeneland Full Scale System (KFS). This supercomputing system, which is available to the National Science Foundation (NSF) scientific community, is designed to meet the compute-intensive needs of a wide range of applications through the use of NVIDIA GPU technology. In achieving ...
Not only is Oak Ridge National Laboratory's Titan the world's most powerful supercomputer, it is also one of the most energy-efficient.
Titan came in at number three on the Green500 list. Organized by Virginia Tech's Wu-chun Feng and Kirk Cameron, the list takes the world's 500 most powerful supercomputers—as ranked by the Top500 list—and reorders them according to how many calculations they can get per watt of electricity.
The Green500 list was announced Wednesday during the SC12 supercomputing conference in Salt Lake City.
Titan's position reflects a significant ...
Compared to the nation, a higher proportion of children in California are uninsured, one in every 10 children or more than 1.1 million in 2011. More of California's children have public health insurance and fewer through their parents' employer. And, over the past three years, a decade of advances in California children's public insurance enrollment has stalled, as coverage in Healthy Families (California's children's health insurance program) declined as a result of reductions in state government funding.
These are just a few of the findings in a new report from the ...
GAINESVILLE, Fla. --- The great white shark is one of the largest living predatory animals and a magnet for media sensationalism, yet its evolutionary history is as misunderstood as its role as a menace.
Originally classified as a direct relative of megatooth sharks, the white shark's evolutionary history has been debated by paleontologists for the last 150 years. In a study appearing in print and online today in the journal Palaeontology, University of Florida researchers name and describe an ancient intermediate form of the white shark, Carcharodon hubbelli, which shows ...
RIVERSIDE, Calif. — The human nose has millions of olfactory neurons grouped into hundreds of different neuron types. Each of these neuron types expresses only one odorant receptor, and all neurons expressing the same odorant receptor plug into one region in the brain, an organization that allows for specific odors to be sensed.
For example, when you smell a rose, only those neurons that express a specific odor receptor that detects a chemical the rose emits get activated, which in turn activates a specific region in the brain. Rotten eggs on the other hand, activate ...
PHILADELPHIA — A promising new approach to treating solid tumors with radiation was highly efficacious and minimally toxic to healthy tissue in a mouse model of cancer, according to data published in Cancer Research, a journal of the American Association for Cancer Research.
Some patients with solid tumors, including prostate cancer, are treated using a clinical technique called brachytherapy. Brachytherapy involves the surgical implantation of radioactive "seeds" within a patient's tumor to expose the tumor cells to high levels of radiation while minimizing the negative ...
November 15, 2012, Hong Kong, China – The international open-access journal GigaScience (a BGI and BioMed Central journal) announces the publication of the whole-genome sequencing and analysis of the Wuzhishan Pig, an extensively inbred, miniature pig, which can serve as an excellent model for human medical research. The availability of the mini-pig genome provides a wealth of genetic tools that will enable detailed and well thought-out analyses on an animal that shares a substantial number of complex diseases with humans. The work here, led by researchers from the BGI, ...
WASHINGTON — An animal study conducted by researchers at Georgetown Lombardi Comprehensive Cancer Center raises questions about the consequences of diet — specifically glucose, the plant-based sugar that fuels cell life — on increased activity of an oncogene that drives tumor growth.
In the study published online today in the journal Cell Cycle, the scientists report, for the first time, that high levels of glucose in the diet of mice with cancer is linked to increased expression of mutant p53 genes. Normal p53 acts as a tumor suppressor, but many scientists believe that ...