(Press-News.org) Electron microscopy at the Department of Energy's Oak Ridge National Laboratory is providing unprecedented views of the individual atoms in graphene, offering scientists a chance to unlock the material's full potential for uses from engine combustion to consumer electronics.
Graphene crystals were first isolated in 2004. They are two-dimensional (one-atom in thickness), harder than diamonds and far stronger than steel, providing unprecedented stiffness, electrical and thermal properties. By viewing the atomic and bonding configurations of individual graphene atoms, scientists are able to suggest ways to optimize materials so they are better suited for specific applications.
In a paper published in Physical Review Letters, a team of researchers from Oak Ridge National Laboratory and Vanderbilt University used aberration-corrected scanning transmission electron microscopy to study the atomic and electronic structure of silicon impurities in graphene.
"We have used new experimental and computational tools to reveal the bonding characteristics of individual impurities in graphene. For instance, we can now differentiate between a non-carbon atom that is two-dimensionally or three-dimensionally bonded in graphene. In fact, we were finally able to directly visualize a bonding configuration that was predicted in the 1930s but has never been observed experimentally," said ORNL researcher Juan-Carlos Idrobo.
Electrons in orbit around an atom fall into four broad categories – s, p, d and f – based on factors including symmetry and energy levels.
"We observed that silicon d-states participate in the bonding only when the silicon is two-dimensionally coordinated," Idrobo said. "There are many elements such as chromium, iron, and copper where the d-states or d-electrons play a dominant role in determining how the element bonds in a material."
By studying the atomic and electronic structure of graphene and identifying any impurities, researchers can better predict which elemental additions will improve the material's performance.
Slightly altering the chemical makeup of graphene could customize the material, making it more suitable for a variety of applications. For example, one elemental addition may make the material a better replacement for the platinum catalytic converters in cars, while another may allow it to function better in electronic devices or as a membrane.
Graphene has the potential to replace the inner workings of electronic gadgets people use every day because of its ability to conduct heat and electricity and its optical transparency. It offers a cheaper and more abundant alternative to indium, a limited resource that is widely used in the transparent conducting coating present in almost all electronic display devices such as digital displays in cars, TVs, laptops and handheld gadgets like cell phones, tablets and music players.
Researchers expect the imaging techniques demonstrated at ORNL to be used to understand the atomic structures and bonding characteristics of atoms in other two-dimensional materials, too.
INFORMATION:
The authors of the paper are Wu Zhou, Myron Kapetanakis, Micah Prange, Sokrates Pantelides, Stephen Pennycook and Idrobo.
This research was supported by National Science Foundation and the DOE Office of Science. Researchers also made use of Oak Ridge National Laboratory's Shared Research Equipment User Facility along with Lawrence Berkeley National Laboratory's National Energy Research Scientific Computing Center, both of which are also supported by DOE's Office of Science.
ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.
END
MANHATTAN, Kan. -- Supercharging is a technique no longer confined to automotive enthusiasts.
Artem Rudenko, a new assistant professor of physics at Kansas State University and member of the James R. Macdonald Laboratory, was one of the principal investigators in an international physics collaboration that used the world's most powerful X-ray laser to supercharge an atom. By stripping a record 36 electrons from a xenon atom, researchers were able to bring the atom to a high positively charged state thought to unachievable with X-ray energy.
The findings will help scientists ...
PHILADELPHIA — Passing one's genes on to the next generation is a mark of evolutionary success. So it makes sense that the body would work to ensure that the genes the next generation inherits are exact replicas of the originals.
New research by biologists at the University of Pennsylvania School of Veterinary Medicine has now identified one way the body does exactly that. This protective role is fulfilled in part by a class of small RNA molecules called pachytene piwi-interacting RNAs, or piRNAs. Without them, germ-cell development in males comes to a halt. Because ...
MANHATTAN, Kan. -- An international scientific collaboration that includes two Kansas State University researchers is bringing home the bacon when it comes to potential animal and human health advancements, thanks to successfully mapping the genome of the domestic pig.
The sequenced genome gives researchers a genetic blueprint of the pig. It includes a complete list of DNA and genes that give pigs their traits like height and color. Once all of the genetic information is understood, scientists anticipate improvements to the animal's health as well as human health, as ...
Colleges are often perceived as leaning left, but research by social scientists at the University of Iowa suggests the reality is more nuanced and that higher education attracts students from across the political spectrum.
The researchers say fraternities and sororities in particular tend to be a locus for students who are more conservative than classmates unaffiliated with the Greek system. They also provide a buffer from influences that can make students more liberal over the course of their college careers.
Study co-author Michael Hevel, an alumnus of the University ...
A study led by researchers from the University of California, San Diego School of Medicine has found a correlation between vitamin D3 serum levels and subsequent incidence of Type 1 diabetes. The six-year study of blood levels of nearly 2,000 individuals suggests a preventive role for vitamin D3 in this disease. The research appears the December issue of Diabetologia, a publication of the European Association for the Study of Diabetes (EASD).
"Previous studies proposed the existence of an association between vitamin D deficiency and risk of and Type 1 diabetes, but ...
Boulder, Colo., USA – The latest Lithosphere articles to go online 26 October through 14 November include studies of slab dynamics both on Earth and on Mars; several discussions of the Troodos ophiolite, Cyprus, as well as other ophiolites; analysis and dating of the Jurassic Bonanza arc, Vancouver Island, Canada; fault system characterization in the central Bhutanese Himalaya; and sandstone dating in northern Russia.
Abstracts are online at http://lithosphere.gsapubs.org/content/early/recent. Representatives of the media may obtain complimentary copies of Lithosphere ...
A novel brain mechanism mediating the inhibition of the critical breathing muscles during rapid eye movement (REM) sleep has been identified for the first time in a new study, offering the possibility of a new treatment target for sleep-related breathing problems.
The findings were published online ahead of print publication in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.
"REM sleep is accompanied by profound inhibition of muscle activity," said researcher Richard Horner, PhD, professor of medicine and physiology at the ...
Much biological research on climate change focuses on the impacts of warming and changes in precipitation over wide areas. Researchers are now increasingly recognizing that at the local scale they must understand the effects of climate change through the intertwined patterns of soils, vegetation, and water flowpaths—not forgetting the uses humans have made of the landscape. In the December issue of BioScience researchers describe how aboveground and belowground responses to springtime warming are becoming separated in time in a forest in New England. This and other indirect ...
Maternal vitamin C deficiency during pregnancy can have serious consequences for the foetal brain. And once brain damage has occurred, it cannot be reversed by vitamin C supplements after birth. This is shown through new research at the University of Copenhagen just published in the scientific journal PLOS ONE.
Population studies show that between 10-20 per cent of all adults in the developed world suffer from vitamin C deficiency. Therefore, pregnant women should think twice about omitting the daily vitamin pill.
"Even marginal vitamin C deficiency in the mother stunts ...
INVEA-TECH today officially announced the introduction of new models of network traffic monitoring probes for the high speed networks. The release includes update of 1-port and 2-port 10GbE models of FlowMon Probe with wire-speed performance and introduction of new 4-port 10GbE model of FlowMon Probe offering the best price performance ratio on the market.
FlowMon Probes are network traffic monitoring probes providing flow monitoring (based on NetFlow/IPFIX technology) for any network. INVEA-TECH offers wide variety of FlowMon Probe models differing in number and type ...