(Press-News.org) By fabricating graphene structures atop nanometer-scale "steps" etched into silicon carbide, researchers have for the first time created a substantial electronic bandgap in the material suitable for room-temperature electronics. Use of nanoscale topography to control the properties of graphene could facilitate fabrication of transistors and other devices, potentially opening the door for developing all-carbon integrated circuits.
Researchers have measured a bandgap of approximately 0.5 electron-volts in 1.4-nanometer bent sections of graphene nanoribbons. The development could provide new direction to the field of graphene electronics, which has struggled with the challenge of creating bandgap necessary for operation of electronic devices.
"This is a new way of thinking about how to make high-speed graphene electronics," said Edward Conrad, a professor in the School of Physics at the Georgia Institute of Technology. "We can now look seriously at making fast transistors from graphene. And because our process is scalable, if we can make one transistor, we can potentially make millions of them."
The findings were scheduled to be reported November 18 in the journal Nature Physics. The research, done at the Georgia Institute of Technology in Atlanta and at SOLEIL, the French national synchrotron facility, has been supported by the National Science Foundation' Materials Research Science and Engineering Center (MRSEC) at Georgia Tech, the W.M. Keck Foundation and the Partner University Fund from the Embassy of France.
Researchers don't yet understand why graphene nanoribbons become semiconducting as they bend to enter tiny steps – about 20 nanometers deep – that are cut into the silicon carbide wafers. But the researchers believe that strain induced as the carbon lattice bends, along with the confinement of electrons, may be factors creating the bandgap. The nanoribbons are composed of two layers of graphene.
Production of the semiconducting graphene structures begins with the use of e-beams to cut trenches into silicon carbide wafers, which are normally polished to create a flat surface for the growth of epitaxial graphene. Using a high-temperature furnace, tens of thousands of graphene ribbons are then grown across the steps, using photolithography.
During the growth, the sharp edges of "trenches" cut into the silicon carbide become smoother as the material attempts to regain its flat surface. The growth time must therefore be carefully controlled to prevent the narrow silicon carbide features from melting too much.
The graphene fabrication also must be controlled along a specific direction so that the carbon atom lattice grows into the steps along the material's "armchair" direction. "It's like trying to bend a length of chain-link fence," Conrad explained. "It only wants to bend one way."
The new technique permits not only the creation of a bandgap in the material, but potentially also the fabrication of entire integrated circuits from graphene without the need for interfaces that introduce resistance. On either side of the semiconducting section of the graphene, the nanoribbons retain their metallic properties.
"We can make thousands of these trenches, and we can make them anywhere we want on the wafer," said Conrad. "This is more than just semiconducting graphene. The material at the bends is semiconducting, and it's attached to graphene continuously on both sides. It's basically a Shottky barrier junction."
By growing the graphene down one edge of the trench and then up the other side, the researchers could in theory produce two connected Shottky barriers – a fundamental component of semiconductor devices. Conrad and his colleagues are now working to fabricate transistors based on their discovery.
Confirmation of the bandgap came from angle-resolved photoemission spectroscopy measurements made at the Synchrotron CNRS in France. There, the researchers fired powerful photon beams into arrays of the graphene nanoribbons and measured the electrons emitted.
"You can measure the energy of the electrons that come out, and you can measure the direction from which they come out," said Conrad. "From that information, you can work backward to get information about the electronic structure of the nanoribbons."
Theorists had predicted that bending graphene would create a bandgap in the material. But the bandgap measured by the research team was larger than what had been predicted.
Beyond building transistors and other devices, in future work the researchers will attempt to learn more about what creates the bandgap – and how to control it. The property may be controlled by the angle of the bend in the graphene nanoribbon, which can be controlled by altering the depth of the step.
"If you try to lay a carpet over a small imperfection in the floor, the carpet will go over it and you may not even know the imperfection is there," Conrad explained. "But if you go over a step, you can tell. There are probably a range of heights in which we can affect the bend."
He predicts that the discovery will create new activity as other graphene researchers attempt to utilize the results.
"If you can demonstrate a fast device, a lot of people will be interested in this," Conrad said. "If this works on a large scale, it could launch a niche market for high-speed, high-powered electronic devices."
INFORMATION:
In addition to Conrad, the research team included J. Hicks, M.S. Nevius, F. Wang, K. Shepperd, J. Palmer, J. Kunc, W.A. De Heer and C. Berger, all from Georgia Tech; A. Tejeda from the Institut Jean Lamour, CNES – Univ. de Nancy and the Synchrotron SOLEIL; A. Taleb-Ibrahimi from the CNRS/Synchrotron SOLEIL, and F. Bertran and P. Le Fevre from Synchrotron SOLEIL.
This research was supported by the National Science Foundation (NSF) under Grants DMR-0820382 and DMR-1005880, the W.M. Keck Foundation, and the Partner University Fund from the Embassy of France. The content of the article is the responsibility of the authors and does not necessarily represent the views of the National Science Foundation.
CITATION: Hicks, J., A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene, Nature Physics (2012). http://dx.doi.org/10.1038/NPHYS2487.
Fabrication on patterned silicon carbide produces bandgap to advance graphene electronics
Semiconducting graphene
2012-11-19
ELSE PRESS RELEASES FROM THIS DATE:
Breakthrough nanoparticle halts multiple sclerosis
2012-11-19
New nanoparticle tricks and resets immune system in mice with MS
First MS approach that doesn't suppress immune system
Clinical trial for MS patients shows why nanoparticle is best option
Nanoparticle now being tested in Type 1 diabetes and asthma
CHICAGO --- In a breakthrough for nanotechnology and multiple sclerosis, a biodegradable nanoparticle turns out to be the perfect vehicle to stealthily deliver an antigen that tricks the immune system into stopping its attack on myelin and halt a model of relapsing remitting multiple sclerosis (MS) in mice, according ...
Research breakthrough selectively represses the immune system
2012-11-19
Reporters, please see "For news media only" box at the end of the release for embargoed sound bites of researchers.
In a mouse model of multiple sclerosis (MS), researchers funded by the National Institutes of Health have developed innovative technology to selectively inhibit the part of the immune system responsible for attacking myelin—the insulating material that encases nerve fibers and facilitates electrical communication between brain cells.
Autoimmune disorders occur when T-cells—a type of white blood cell within the immune system—mistake the body's own tissues ...
International team discovers likely basis of birth defect causing premature skull closure in infants
2012-11-19
(SACRAMENTO, Calif.) -- An international team of geneticists, pediatricians, surgeons and epidemiologists from 23 institutions across three continents has identified two areas of the human genome associated with the most common form of non-syndromic craniosynostosis ― premature closure of the bony plates of the skull.
"We have discovered two genetic factors that are strongly associated with the most common form of premature closure of the skull," said Simeon Boyadjiev, professor of pediatrics and genetics, principal investigator for the study and leader of the International ...
Skin cells reveal DNA's genetic mosaic
2012-11-19
The prevailing wisdom has been that every cell in the body contains identical DNA. However, a new study of stem cells derived from the skin has found that genetic variations are widespread in the body's tissues, a finding with profound implications for genetic screening, according to Yale School of Medicine researchers.
Published in the Nov. 18 issue of Nature, the study paves the way for assessing the extent of gene variation, and for better understanding human development and disease.
"We found that humans are made up of a mosaic of cells with different genomes," ...
Optogenetics illuminates pathways of motivation through brain, Stanford study shows
2012-11-19
STANFORD, Calif. — Whether you are an apple tree or an antelope, survival depends on using your energy efficiently. In a difficult or dangerous situation, the key question is whether exerting effort — sending out roots in search of nutrients in a drought or running at top speed from a predator — will be worth the energy.
In a paper to be published online Nov. 18 in Nature, Karl Deisseroth, MD, PhD, a professor of bioengineering and of psychiatry and behavioral sciences at Stanford University, and postdoctoral scholar Melissa Warden, PhD, describe how they have isolated ...
Stanford/Yale study gives insight into subtle genomic differences among our own cells
2012-11-19
STANFORD, Calif. — Stanford University School of Medicine scientists have demonstrated, in a study conducted jointly with researchers at Yale University, that induced-pluripotent stem cells — the embryonic-stem-cell lookalikes whose discovery a few years ago won this year's Nobel Prize in medicine — are not as genetically unstable as was thought.
The new study, which will be published online Nov. 18 in Nature, showed that what seemed to be changes in iPS cells' genetic makeup — presumed to be inflicted either in the course of their generation from adult cells or during ...
Daycare has many benefits for children, but researchers find mysterious link with overweight
2012-11-19
Young children who attend daycare on a regular basis are 50% more likely to be overweight compared to those who stayed at home with their parents, according to a study by researchers at the University of Montreal and the CHU Sainte-Justine Hospital Research Centre. "We found that children whose primary care arrangement between 1.5 and 4 years was in daycare-center or with an extended family member were around 50% more likely to be overweight or obese between the ages of 4-10 years compared to those cared for at home by their parents," said Dr. Marie-Claude Geoffroy, who ...
Decreased kidney function leads to decreased cognitive functioning
2012-11-19
Decreased kidney function is associated with decreased cognitive functioning in areas such as global cognitive ability, abstract reasoning and verbal memory, according to a study led by Temple University. This is the first study describing change in multiple domains of cognitive functioning in order to determine which specific abilities are most affected in individuals with impaired renal function.
Researchers from Temple, University of Maine and University of Maryland examined longitudinal data, five years apart, from 590 people. They wanted to see how much kidney function ...
Inpatient sleeping drug quadrupled fall risk
2012-11-19
A drug commonly prescribed to help patients sleep in hospitals has been associated with an increased risk of falls, according to a study published in the Journal of Hospital Medicine.
U.S. sleep specialists from the Mayo Clinic found that the fall rate among the 4,962 patients who took zolpidem during their hospital stay was more than four times as high as the 11,358 who did not take the drug.
They also found that the risk posed by the drug was greater than the risks posed by factors such as age, cognitive impairment, delirium or insomnia, regardless of the dosage used.
"Ensuring ...
Teleconcussion validated in Mayo Clinic case study
2012-11-19
PHOENIX, Ariz. — A program at Mayo Clinic using telemedicine technology is showing promise for patients with concussions in rural Arizona. A case study published in the December 2012 issue of Telemedicine and e-Health validates "teleconcussion" as a useful means to assess concussed patients.
In the case study, doctors at Mayo Clinic in Arizona conducted a live audio-video evaluation of a 15-year-old soccer player in Show Low, Ariz., who received a concussion during a game. The teleconcussion evaluation, believed to be the first in the state to use telemedicine for concussions, ...
LAST 30 PRESS RELEASES:
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology
Climate fee on food could effectively cut greenhouse gas emissions in agriculture while ensuring a social balance
Harnessing microwave flow reaction to convert biomass into useful sugars
Unveiling the secrets of bone strength: the role of biglycan and decorin
Revealing the “true colors” of a single-atom layer of metal alloys
New data on atmosphere from Earth to the edge of space
Self-destructing vaccine offers enhanced protection against tuberculosis in monkeys
Feeding your good gut bacteria through fiber in diet may boost body against infections
Sustainable building components create a good indoor climate
High levels of disordered eating among young people linked to brain differences
Hydrogen peroxide and the mystery of fruit ripening: ‘Signal messengers’ in plants
T cells’ capability to fully prevent acute viral infections opens new avenues for vaccine development
Study suggests that magma composition drives volcanic tremor
Sea surface temperatures and deeper water temperatures reached a new record high in 2024
[Press-News.org] Fabrication on patterned silicon carbide produces bandgap to advance graphene electronicsSemiconducting graphene