(Press-News.org) ANN ARBOR—A glass plate with a nanoscale roughness could be a simple way for scientists to capture and study the circulating tumor cells that carry cancer around the body through the bloodstream.
Engineering and medical researchers at the University of Michigan have devised such a set-up, which they say takes advantage of cancer cells' stronger drive to settle and bind compared with normal blood cells.
Circulating tumor cells are believed to contribute to cancer metastasis, the grim process of the disease spreading from its original site to distant tissues. Blood tests that count these cells can help doctors predict how long a patient with widespread cancer will live.
As important as the castaway cells are, scientists don't know a lot about them. They're rare, at about one per billion blood cells. And they are not all identical, even if they come from the same tumor. Existing tools for isolating them only catch certain types of cells—those that express specific surface proteins or are larger than normal blood cells.
For example, the commonly used, FDA-approved CellSearch system uses antibody- coated magnetic beads to seek out tumor cells and bind to them. But not all circulating tumor cells express the proteins these antibodies recognize. It is possible that the most dangerous ones, known as cancer stem or progenitor cells, may have shed that tell-tale coat, thereby evading approaches that rely on antibodies.
The researchers say their system could likely trap these stealth cancer stem cells—a feat no research team has accomplished yet.
"Our system can capture the majority of circulating tumor cells regardless of their surface proteins or their physical sizes, and this could include cancer progenitor or initiating cells," said Jianping Fu, assistant professor of mechanical engineering and biomedical engineering and a senior author of a paper on the technique published online in ACS Nano.
Fu and his engineering colleagues teamed up with U-M senior cancer researcher and breast cancer clinician Dr. Sofia Merajver and her team. This multidisciplinary group believes that while the device could one day improve cancer diagnosis and prognosis, its first uses would be for researchers to isolate live circulating tumor cells from blood specimens and study their biological and physical properties.
"Understanding the physical behavior and nature of these circulating tumor cells will certainly help us understand better one of the most difficult questions in cancer biology—the metastatic cascade, that is, how the disease spreads," Fu said. "Our system could provide an efficient and powerful way to capture the live circulating tumor cells and use them as a surrogate to study the metastatic process."
But capturing them, as challenging as it has proven to be, is only the beginning, said Merajver, who has spent the last 18 years studying cell signaling and the physical properties of highly aggressive cancer cells.
"The application of integrative biology is necessary to put together the story of how these cells behave in time to achieve successful metastases and thereby discover the routes to suppressing this deadly development," Merajver said. "Our collaboration with the Fu lab exemplifies the innovation needed for the war against cancer—team science from the lab all the way to the clinic."
In their experiments, the researchers used a standard and inexpensive microfabrication technique called "reactive ion etching" to roughen glass slides with a nanoscale resolution. Then, they spiked different blood samples with cancer cells derived from human breast, cervical and prostate tissues. When they poured the samples over the glass plates, the nanorough glass surfaces captured an average of 88 percent to 95 percent of the cancer cells.
Fu suggests why.
"Blood cells are intrinsically floating," Fu said. "Cancer cells including circulating tumor cells derived from solid tumors are presumably adherent cells. They can escape from the primary tumor while maintaining certain adhesion properties that allow them to attach and establish another tumor."
In other studies, researchers have noticed that circulating tumor cells tend to stick to rough surfaces. But the rough surfaces in those studies were coated with capture antibodies. These new nanorough surfaces do not require capture antibodies.
"Our method presents a significant improvement as it can be applied in principle to any cancer cell that comes from solid tumors," Fu said.
The paper is titled "Nanoroughened Surfaces for Efficient Capture of Circulating Tumor Cells without Using Capture Antibodies." The university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.
###
The first author is Weiqiang Chen, a doctoral student in the U-M Department of Mechanical Engineering. Researchers from the Chinese Academy of Sciences in Shanghai and the City University of Hong Kong also contributed, along with others in the U-M College of Engineering and the U-M Medical School. The research was supported by the National Science Foundation, the UM-SJTU Collaboration on Biomedical Technologies, the U-M Comprehensive Cancer Center, the Michigan Institute for Clinical & Health Research and the U-M Department of Mechanical Engineering.
Jianping Fu: https://me-web2.engin.umich.edu/pub/directory/bio?uniqname=jpfu
Sofia Merajver: www.med.umich.edu/merajverlab
END
When you walk into a darkened room, your first instinct is to feel around for a light switch. You slide your hand along the wall, feeling the transition from the doorframe to the painted drywall, and then up and down until you find the metal or plastic plate of the switch. During the process you use your sense of touch to develop an image in your mind of the wall's surface and make a better guess for where the switch is.
Sliman Bensmaia, PhD, assistant professor of organismal biology and anatomy at the University of Chicago, studies the neural basis of tactile perception, ...
A University of British Columbia researcher has helped create a gel – based on the mussel's knack for clinging to rocks, piers and boat hulls – that can be painted onto the walls of blood vessels and stay put, forming a protective barrier with potentially life-saving implications.
Co-invented by Assistant Professor Christian Kastrup while a postdoctoral student at the Massachusetts Institute of Technology, the gel is similar to the amino acid that enables mussels to resist the power of churning water. The variant that Kastrup and his collaborators created, described in ...
ANN ARBOR—Vega, a star astronomers have used as a touchstone to measure other stars' brightness for thousands of years, may be more than 200 million years older than previously thought. That's according to new findings from the University of Michigan.
The researchers estimated Vega's age by precisely measuring its spin speed with a tool called the Michigan Infrared Combiner, developed by John Monnier, associate professor of astronomy in U-M's College of Literature, Science, and the Arts.
MIRC collects the light gathered by six telescopes to make it appear to be coming ...
In December, a NASA mission to study the sun will make its third launch into space for a six-minute flight to gather information about the way material roils through the sun's atmosphere, sometimes causing eruptions and ejections that travel as far as Earth. The launch of the EUNIS mission, short for Extreme Ultraviolet Normal Incidence Spectrograph, is scheduled for Dec. 15, 2012, from White Sands, N.M. aboard a Black Brant IX rocket. During its journey, EUNIS will gather a new snapshot of data every 1.2 seconds to track the way material of different temperatures flows ...
Rockville, Md. — A new study published in Investigative Ophthalmology & Visual Science found that between 40 to 50 percent of older adults with visually impairing eye disease limit their activities due to a fear of falling. Vision scientists warn that this protective strategy puts seniors at risk for social isolation and disability.
In the paper, "Activity Limitation Due to a Fear of Falling in Older Adults with Eye Disease," researchers report on their examination of patients with age-related macular degeneration (AMD), glaucoma and Fuchs corneal dystrophy, as compared ...
Athens, Ga. – Fish play a far more important role as contributors of nutrients to marine ecosystems than previously thought, according to researchers at the University of Georgia and Florida International University. In a pair of papers in the journal Ecology, they show that fish contribute more nutrients to their local ecosystems than any other source—enough to cause changes in the growth rates of the organisms at the base of the food web.
Jacob Allgeier, a doctoral student in the UGA Odum School of Ecology, and Craig Layman, associate professor at Florida International ...
Unique viruses called bacteriophages may play an important role in competition among bacterial strains, influencing the overall ecosystem of the human intestine, scientists at The University of Texas at Arlington and UT Southwestern Medical Center say.
A team led by Lora V. Hooper, an associate professor of immunology and microbiology at The University of Texas Southwestern Medical Center, and including UT Arlington assistant professor of biology Jorge Rodrigues examined the bacteriophages, or phages, produced by genetic information harbored in the chromosome of the mammalian ...
Even before obesity occurs, eating fatty and sugary foods causes chemical changes in the brain, meaning that going on a diet might feel similar to going through drug withdrawal, according to a study published today by Dr. Stephanie Fulton of the University of Montreal's Faculty of Medicine and its affiliated CRCHUM Hospital Research Centre. "By working with mice, whose brains are in many ways comparable to our own, we discovered that the neurochemistry of the animals who had been fed a high fat, sugary diet were different from those who had been fed a healthy diet," Fulton ...
Philadelphia, PA, December 12, 2012 – Cell aging, or cellular senescence, has an important role in the natural physiological response to tumor development. Activated oncogenes are able to induce senescence, and recent findings have suggested that oncogene-induced senescence (OIS) could play a key role in future cancer therapy. Researchers have now identified a previously unknown mechanism in the regulation of OIS. This study is published online in advance of the January issue of The American Journal of Pathology.
In many types of normal cells, OIS depends on induction ...
New York, NY, December 12th, 2012—Average premiums for employer-sponsored family health insurance plans rose 62 percent between 2003 and 2011, from $9,249 to $15,022 per year, according to a new Commonwealth Fund report. The report, which tracks state trends in employer health insurance coverage, finds that health insurance costs rose far faster than incomes in all states. Workers are also paying more out-of-pocket as employee payments for their share of health insurance premiums rose by 74 percent on average and deductibles more than doubled, up 117 percent between 2003 ...