(Press-News.org) This press release is available in Spanish.
VIDEO:
This is a cauliflower.
Click here for more information.
The scientists have found a formula that describes how the patterns found in a multitude of natural structures are formed. "We have found a model that describes, in detail, the evolution in time and in space of cauliflower-type fractal morphologies for nanoscopic systems", explains Professor Rodolfo Cuerno, of UC3M's Mathematics Department, author of the research, together with scientists from Universidad Pontificia Comillas (UPCO), the Instituto de Ciencia de los Materiales de Madrid (the Materials Science Institute of Madrid) of the Consejo Superior de Investigaciones Científicas (CSIC) (Spanish National Research Council), la Escuela Politécnica de París (Polytechnic School of Paris, France) and the Universidad Católica de Lovaina (Catholic University of Louvain, Belgium).
This work, which was recently published in the New Journal of Physics, falls within the field of fractal geometry, which is based on the mathematical description of many natural forms, such as sea coasts, the borders between countries, clouds, snowflakes and even the networks of blood vessels. A fractal is characterized because its parts are similar to the whole. "In the case of cauliflowers, this property (self-similarity) becomes evident if you look closely at a photo of them," says another of the researchers, Mario Castro, a professor at UPCO. "In fact," he adds, "without more information, it is impossible to know the size of the object." This way, using relatively simple algorithms, complex structures almost indistinguishable from certain landscapes, leaves or trees, for example, can now be generated. "However, the general mechanisms that govern the appearance or evolution over time of those natural structures have rarely been identified beyond a merely visual or geometric reproduction," clarifies the researcher.
From the supermarket to the laboratory
The cauliflower-type morphologies were known is this realm in an empirical way, but no one had provided a model like the one that these scientists have developed. "In our case," they comment, "the connection came about naturally when a certain ingredient (noise) was added to a related model that we had worked on previously. When we did that, in the numeric simulations, surfaces appeared, and we quickly identified them as the ones that our experiment colleagues had been able to obtain, under the right conditions, in their laboratories." Based on the characteristics of this theoretical model, they have inferred general mechanisms that can be common and can help in making models of other very different systems, such as a combustion front or a cauliflower like the ones that can be found in any supermarket.
Fractals of this type are interesting because they are ubiquitous, that is, they appear in systems that vary widely in their nature and dimensions. In general, fractals can be found in any branch of the natural sciences: mathematics (specific types of functions), geology (river basins or the outline of a coast), biology (forms of aggregate cells, of plants, of the network of blood vessels...), physics (the growth of amorphous solid crystals or the distribution of galaxies), chemistry (the distribution in space of the reagents of chemical reactions). Moreover, they have also been studied due to their relationship with structures created by man, such as communication and transportation networks, city layouts, etc.
This finding may help to discover concrete applications for improving the technologies used in thin film coatings, and to understand the conditions under which they are smooth or have wrinkles or roughness. "This is also useful in generating textures in computer simulations," the researchers point out. "And, conceptually," they add, "this can give us clues about the general mechanisms involved in forming structures in areas that are very different from the ones in which the model was formulated, such as those in which there is competition for growth resources among the various parts of the system."
INFORMATION:
Further information:
Universality of cauliflower-like fronts: from nanoscale thin films to macroscopic plants
Authors: Mario Castro, Rodolfo Cuerno, Matteo Nicoli, Luis Vázquez and Josephus G. Buijnsters
Journal: New J. Phys. 14 (2012) 103039 doi:10.1088/1367-2630/14/10/103039
http://iopscience.iop.org/1367-2630/14/10/103039/article
A mathematical formula to decipher the geometry of surfaces like that of cauliflower
2012-12-19
ELSE PRESS RELEASES FROM THIS DATE:
Geo-engineering against climate change
2012-12-19
Numerous geo-engineering schemes have been suggested as possible ways to reduce levels of the greenhouse gas carbon dioxide in the atmosphere and so reduce the risk of global warming and climate change. One such technology involves dispersing large quantities of iron salts in the oceans to fertilize otherwise barren parts of the sea and trigger the growth of algal blooms and other photosynthesizing marine life. Photosynthesis requires carbon dioxide as its feedstock and when the algae die they will sink to the bottom of the sea taking the locked in carbon with them.
Unfortunately, ...
Better approach to treating deadly melanoma identified by scientists
2012-12-19
Scientists at The University of Manchester have identified a protein that appears to hold the key to creating more effective drug treatments for melanoma, one of the deadliest cancers.
Researchers funded by Cancer Research UK have been looking at why new drugs called "MEK inhibitors", which are currently being tested in clinical trials, aren't as effective at killing cancer cells as they should be.
They discovered that MITF - a protein that helps cells to produce pigment but also helps melanoma cells to grow and survive - is able to provide cancer cells with a resistance ...
Fast-acting enzymes with 2 fingers: Protein structurally and dynamically explained
2012-12-19
Researchers at the RUB and from the MPI Dortmund have uncovered the mechanism that
switches off the cell transport regulating proteins. They were able to resolve in detail how the central switch protein Rab is down-regulated with two "protein fingers" by its interaction partners. The structural and dynamic data is reported by the researchers led by Prof. Dr. Klaus Gerwert (Chair of Biophysics, RUB) and Prof. Dr. Roger S. Goody (Max Planck Institute for Molecular Physiology, Dortmund, Germany) in the Online Early Edition of the journal PNAS. "Unlike in the cell growth protein ...
Badger sleeping habits could help target TB control
2012-12-19
Scientists found that badgers which strayed away from the family burrow in favour of sleeping in outlying dens were more likely to carry TB.
The 12-month study of 40 wild badgers was funded by the Department for Environment, Food and Rural Affairs (Defra) and could have implications for the management of bovine TB in parts of the UK. The behaviour of individual animals is thought to be a key factor in how the disease is spread among animals and livestock. The new findings could help to understand and develop measures to manage TB in badgers.
The study is published ...
The role of the innate immune cells in the development of type 1 diabetes
2012-12-19
The researchers reveal the role of the innate immune cells, especially the dendritic cells, that cause the activation of the killer T-lymphocytes whose action is directed against the p pancreatic cells. The results obtained in mice make it possible to consider new ways of regulating the auto-immune reaction generated by the innate immune cells.
Type 1 diabetes, or insulin-dependent diabetes, is an auto-immune disease characterised by the destruction of insulin-producing pancreatic β cells that are present in the Islets of Langerhans which are themselves in the pancreas. ...
Not without my microbes
2012-12-19
Apart from the common European cockchafer (Melolontha melolontha), the European forest cockchafer (Melolontha hippocastani) is the most common species of the Melolontha genus. These insects can damage huge areas of broadleaf trees and conifers in woodlands and on heaths. Cockchafers house microbes in their guts that help them to digest their woody food, such as lignocelluloses and xylans. Scientists of the Max Planck Institute for Chemical Ecology in Jena, Germany, have now performed comprehensive RNA analyses and identified the microbiota of cockchafer larvae feeding on ...
Scale-up of a temporary bioartificial liver support system described in BioResearch Open Access
2012-12-19
New Rochelle, NY, December 19, 2012—Acute liver failure is usually fatal without a liver transplant, but the liver can regenerate and recover if given time to heal. A bioartificial liver machine that can provide temporary support while organ regeneration takes place has been scaled up for testing in a large animal model and is described in an article in BioResearch Open Access, a bimonthly peer-reviewed open access journal from Mary Ann Liebert, Inc., publishers. The article is available on the BioResearch Open Access website .
A team of researchers from University College ...
When the ice melts, the Earth spews fire
2012-12-19
In 1991, it was a disaster for the villages nearby the erupting Philippine volcano Pinatubo. But the effects were felt even as far away as Europe. The volcano threw up many tons of ash and other particles into the atmosphere causing less sunlight than usual to reach the Earth's surface. For the first few years after the eruption, global temperatures dropped by half a degree. In general, volcanic eruptions can have a strong short-term impact on climate. Conversely, the idea that climate may also affect volcanic eruptions on a global scale and over long periods of time is ...
Paper waste used to make bricks
2012-12-19
Researchers at the University of Jaen (Spain) have mixed waste from the paper industry with ceramic material used in the construction industry. The result is a brick that has low thermal conductivity meaning it acts as a good insulator. However, its mechanical resistance still requires improvement.
"The use of paper industry waste could bring about economic and environmental benefits as it means that material considered as waste can be reused as raw material." – This is one of the conclusions of the study developed by researchers at the Upper Polytechnic School of Linares ...
New dynamic dual-core optical fiber enhances data routes on information superhighway
2012-12-19
Optical fibers –the backbone of the Internet–carry movies, messages, and music at the speed of light. But for all their efficiency, these ultrathin strands of pristine glass must connect to sluggish signal switches, routers, and buffers in order to transmit data. Hoping to do away with these information speed bumps, researchers have developed a new, dual-core optical fiber that can perform the same functions just by applying a miniscule amount of mechanical pressure.
These new nanomechanical fibers, which have their light-carrying cores suspended less than 1 micrometer ...