(Press-News.org) STANFORD, Calif. - Tuberculosis is a devastating disease that kills nearly 2 million people worldwide each year. Although antibiotics exist that can ameliorate the symptoms, the courses of therapy last for months and don't completely eradicate the disease, which frequently recurs years or decades after the initial treatment.
Now, in a classic case of bench-to-bedside research, scientists at the Stanford University School of Medicine have discovered a possible reason for the disease's resistance: The ability of the tuberculosis bacteria to infiltrate and settle down in a particular class of stem cell in the bone marrow. By doing so, the bacteria take advantage of the body's own mechanisms of self-renewal.
"Cancer scientists have noted that self-renewing stem cells like these in the bone marrow have properties - such as natural drug resistance, infrequent division and a privileged immune status - that make them resistant to many types of treatment," said Dean Felsher, MD, PhD, professor of oncology and of pathology. "Now it turns out that this ancient organism, Mycobacterium tuberculosis, figured out a long time ago that, for the same reasons, these cells are ideal hosts to invade and in which to hide."
Not only did the scientists find genetic material from the bacteria inside the stem cells, they were also able to isolate active bacteria from the cells of human patients with tuberculosis who had undergone extensive treatment for the disease. The findings raise the possibility that other infectious agents may employ similar "wolf-in-stem-cell-clothing" tactics. And, although any new human treatments are likely to still be years away, they suggest a new possible target in the fight against tuberculosis, which infects nearly 2.2 billion people worldwide.
"We now need to learn how the bacteria find and infect this tiny population of stem cells, and what triggers it to reactivate years or decades after successful treatment of the disease," said postdoctoral scholar Bikul Das, MBBS, PhD.
Felsher is a co-senior author of the study, which will be published online Jan. 30 in Science Translational Medicine. Das is the lead author. The research was conducted in collaboration with scientists from the Forsyth Institute in Cambridge, Mass.; the Hospital for Sick Children in Toronto; and several research groups in India.
The research focuses on a subset of stem cells in the bone marrow called mesenchymal stem cells. These cells are multipotent, meaning they can become several different types of specialized cells, including bone, fat and cartilage. Although the mesenchymal stem cells are most often found in the bone marrow, they are known to be able to migrate to sites in the lungs, where the tuberculosis bacteria thrive.
"Hematopoeitic cells, especially macrophages, have long been thought of as the primary intracellular niche for M. tuberculosis, even when the infection is present at a very low levels and the individual is asymptomatic," said Kevin Urdahl, MD, PhD, an assistant professor at Seattle Biomedical Research Institute, the country's largest independent organization devoted to the study of infectious diseases. Urdahl was not involved in the research. "However, this study shows that the bacteria also has the capacity to reside within mesenchymal stem cells, and may even persist in these cells after drug treatment. Although further studies will be needed to establish the relative importance of this niche during latent infection, the immunoprivileged nature of the bone marrow and the ability of mesenchymal stem cells to express drug efflux pumps make this an intriguing possibility that could have important clinical implications."
Although tuberculosis is most commonly known as a disease of the lungs, it can infect many parts of the body, including the abdomen, bone, skin and brain. The respiratory form of the disease is spread through infectious particles aerosolized when an infected person coughs or sneezes. Many cell types have been found to harbor tuberculosis bacteria, but the location of the bacteria's primary (and highly successful dormant variant) hideout has remained unclear. However, Das noticed a clue during his years as a physician in India.
"Fifteen years ago, I was treating hundreds of tuberculosis cases," said Das. "At the time, we noticed we were finding tuberculosis bacteria in bone marrow biopsies that had been obtained from some of these patients for other reasons. This was a totally unexpected and accidental finding, but it gave me the idea that the bacteria could be infiltrating these cells."
To test his finding, Das, who came to Stanford as a postdoctoral scholar after completing a fellowship at the Hospital for Sick Children in Toronto, exposed bone marrow stem cells from healthy human donors to the tuberculosis bacteria. He found that not only did the bacteria infect the cells, but that they were also able to persist inside the cells for at least two weeks as they were maintained in culture. Upon closer investigation, he found that the bacteria preferentially infect mesenchymal stem cells expressing a cell surface marker called CD271 and that the viability of the bacteria in the cells decreased if the stem cells were stimulated to specialize, or differentiate, into other cell types.
Das next turned to a mouse model of dormant tuberculosis devised and created by his colleagues in Cambridge. This model relies on a genetically modified strain of tuberculosis bacteria that can replicate only in the presence of a compound called streptomycin. In the absence of streptomycin, the bacteria remain dormant in the animal in a manner similar to that seen in treated human tuberculosis patients.
Together the researchers exposed laboratory mice to aerosolized particles of the modified bacteria. The mice became infected, and dormant bacteria were found in the CD271-expressing mesenchymal stem cells in the bone marrow of the animals six months after streptomycin withdrawal. When Das and his colleagues injected other mice with these tuberculosis-carrying stem cells, those animals went on to develop characteristic symptoms of the disease, including lung lesions called granulomas.
"These mesenchymal stem cells have never been implicated as a host for tuberculosis," said Felsher, "and they serve as a potential source for dormant disease. Moreover, these cells express drug-efflux pumps in their outer membranes that could make them resistant to anti-tuberculosis medications."
Finally, Das turned to collaborators in India to determine whether what happened in the mice reflected what happens in infected people. The researchers conducted a small clinical study in which bone marrow biopsies were collected from nine people who had undergone the complete course of anti-tuberculosis treatment and whose sputum, a mucus-like substance secreted into the airways of the respiratory tract, contained no detectable bacteria. In eight of the nine people, the researchers were able to detect bacterial DNA in the mesenchymal stem cells obtained from bone marrow; in two of these eight, they were able to isolate living bacteria.
"Not only is this strong evidence that the tuberculosis can remain dormant in stem cells, but it shows that the living bacteria could be recovered from these cells after a long period of time," said Das. "It's also very suggestive of how the reactivation could be triggered: These stem cells are known to migrate to sites of injury or inflammation and begin dividing. So, migrating stem cells harboring dormant bacteria might reactivate the disease in the lung. Interestingly, I and other physicians treating patients with chronic obstructive pulmonary disease - which results in lung inflammation - have seen a strong correlation between COPD and tubercular relapse. It is possible that the tuberculosis relapse in COPD might involve the stem-cell mediated reactivation of a dormant tuberculosis infection."
In the future the scientists plan to focus on investigating the cellular mechanisms used by the tuberculosis bacteria to infect and persist in the mesenchymal stem cells, and how reactivation occurs on a molecular level. They're also interested in the possibility that tuberculosis might not be the only microbial bad boy that's learned how to exploit the stem cells' properties as a perfect hiding place.
"This could possibly be a more general paradigm," said Felsher. "Other infectious agents might use stem cells in a similar manner. We'd like to further characterize whether and how these stem cells provide a protective niche for other infectious agents."
###
The research was funded by the Bill & Melinda Gates Foundation, the Canadian Cancer Society, the KaviKrishna Foundation, the Laurel Foundation, the National Institutes of Health (grants R01AI076425, R01 CA105102, CA89305-0351 and CA112973) and the Department of Defense (grant PR080163).
Information about Stanford's Department of Medicine, which also supported the work, is available at http://medicine.stanford.edu.
The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.
Print media contact: Krista Conger at (650) 725-5371 (kristac@stanford.edu)
Broadcast media contact: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)
Tuberculosis may lurk in bone marrow stem cells of infected patients, Stanford researchers say
2013-01-31
ELSE PRESS RELEASES FROM THIS DATE:
Arunachal contributes in detecting stem cells where dormant TB bacteria hide
2013-01-31
The Idu-Mishmi community and Arunachal Pradesh appeared on the world map today for its greatest contribution in studying dormant Mycobacterium in TB that has affected nearly 4 billion people in the world and causing 1.9 million deaths yearly. In India, one person is dying of TB every 3 minutes. The study details and the contribution of Idu-Mishmis of Arunachal Pradesh and RIWATCH (Research Institute of World's Ancient Traditions Cultures and Heritage) in accomplishing the study has been duly acknowledged in a research paper published in a reputed journal 'Science Translational ...
Tenofovir Gel wins out in drug absorption study, but HIV prevention trials say differently
2013-01-31
PITTSBURGH, Jan. 30, 2012 –A novel head-to-head study looking at differences in how the antiretroviral (ARV) drug tenofovir gets absorbed in the body as either an oral tablet or a vaginal gel found tenofovir gel can achieve substantially higher concentrations of active drug in vaginal tissue than the oral tablet, suggesting that tenofovir gel should be highly effective in protecting women against HIV transmitted through vaginal sex. Yet, as unequivocal as the study's results may be, they have not been borne out in HIV prevention trials to date, leading the researchers to ...
Antibiotics cut death rate for malnourished children
2013-01-31
Severely malnourished children are far more likely to recover and survive when given antibiotics along with a therapeutic peanut-based food than children who are simply treated with the therapeutic food alone, researchers at Washington University School of Medicine in St. Louis have found.
"The findings are remarkable," says Indi Trehan, MD, lead author of the research, published Jan. 31 in The New England Journal of Medicine. "Based on previous research, we didn't think there would be much benefit from antibiotics. We did not at all expect to see a drop in the death ...
Vultures foraging far and wide face a poisonous future
2013-01-31
A first ever study of the range and habits of white-backed vultures across southern Africa shows that they often shun national parks, preferring to forage further afield on private farmland.
This behaviour and their tendency to scavenge in groups, means that vultures risk encountering dead cattle that have been administered veterinary drugs that are poisonous to them, or even poisoned carcasses intended to control other carnivores such as jackals.
The research, using Global Positioning System (GPS) satellite transmitters to track the movements of adolescent vultures, ...
Exposure to antiepileptic drug in womb linked to autism risk
2013-01-31
Children whose mothers take the antiepileptic drug sodium valproate while pregnant are at significantly increased risk of autism and other neurodevelopmental disorders, suggests a small study published online in the Journal of Neurology Neurosurgery and Psychiatry.
The authors base their findings on children born to 528 pregnant women between 2000 and 2004 in the North West of England.
Just fewer than half the mums (243) had epilepsy, all but 34 of whom took antiepileptic drugs during their pregnancy. Fifty nine mums took carbamazepine; 59 took valproate; 36 took lamotrigine; ...
Bonobos predisposed to show sensitivity to others
2013-01-31
Comforting a friend or relative in distress may be a more hard-wired behavior than previously thought, according to a new study of bonobos, which are great apes known for their empathy and close relation to humans and chimpanzees. This finding provides key evolutionary insight into how critical social skills may develop in humans. The results are published in the online journal PLOS ONE.
Researchers from the Yerkes National Primate Research Center, Emory University, observed juvenile bonobos at the Lola ya Bonobo sanctuary in the Democratic Republic of Congo engaging ...
Study finds parasites and poor antenatal care are main causes of epilepsy in Africa
2013-01-31
The largest study of epilepsy in sub-Saharan Africa to date reveals that programmes to control parasitic diseases and access to better antenatal care could substantially reduce the prevalence of the disease in this region.
Epilepsy is one of the most common neurological conditions worldwide and it is well known that it is significantly more prevalent in poorer countries and rural areas. The study of over half a million people in five countries of sub-Saharan Africa is the first to reveal the true extent of the problem and the impact of different risk factors.
The ...
Risk of unwarranted pregnancies with morning after pill conscience clauses
2013-01-31
[The fox and the grapes: an Anglo-Irish perspective on conscientious objection to the supply of emergency hormonal contraception without prescription Online First doi 10.1136/medethics-2012-100975]
Conscience clauses, which allow pharmacists to opt out of providing the "morning after pill" without a prescription, risk unwanted pregnancies and undermine the principle of universal healthcare in the NHS, say pharmacists in the Journal of Medical Ethics.
These clauses should either be banned or enhanced so that pharmacists and patients know exactly where they stand, rather ...
Researchers see more West Nile virus in orchards and vineyards
2013-01-31
PULLMAN, Wash.—Washington State University researchers have linked orchards and vineyards with a greater prevalence of West Nile virus in mosquitoes and the insects' ability to spread the virus to birds, horses and people.
The finding, reported in the latest issue of the journal PLOS ONE, is the most finely scaled look at the interplay between land use and with the virus's activity in key hosts. By giving a more detailed description of how the disease moves across the landscape, it opens the door to management efforts that might bring the disease under control, says David ...
BRI researchers identify biomarker and potential therapy target in multiple sclerosis
2013-01-31
(Seattle, January 30, 2013) Researchers from Benaroya Research Institute at Virginia Mason (BRI) have found that proteins in the IL-6 signaling pathway may be leveraged as novel biomarkers of multiple sclerosis (MS) to gauge disease activity and as a target for new therapies. The research, which investigated how several components involved in immune response differ between MS patient and control samples, was conducted by a team of researchers at BRI led by Dr. Jane Buckner in collaboration with Dr. Mariko Kita at Virginia Mason Medical Center and was published today in ...