Short-range scattering in quantum dots
Discovery advances novel devices
2010-10-21
(Press-News.org) Washington, D.C. (October 19, 2010) -- Chinese researchers, reporting in the Journal of Applied Physics, published by the American Institute of Physics, have described a new breakthrough in understanding the way electrons travel around quantum dots. This might lead to promising new fabrication methods of novel quantum devices.
Guodong Li and colleagues at the National Center for Nanoscience and Technology in Beijing carried out an experiment using self-assembled quantum dots and a two-dimensional electron gas, and then fit the data to a model to find out the type of scattering exhibited.
Much recent work has examined the internal structure of electron states of these 10-nm-scale quantum dots, which are tiny, very efficient energy absorbers that can release energy at custom frequencies depending on their size. Self-assembled quantum dots hold great promise for inexpensive fabrication of all kinds of novel applications such as lasers, detectors, and optical data storage, as well as in nanotechnology research. What is missing, says the team, is an understanding of the scattering effects of the electrons. Optimizing scattering may be useful as a way of efficiently transporting electrons and thereby maximizing the performance of quantum dot-based devices.
To study these effects, the researchers placed an AlGaAs/GaAs two-dimensional electron gas (2DEG) near embedded GaSb/GaAs type-II quantum dots at a temperature of 4.2 K.
"The type-II GaSb quantum dots only confine the holes and not the electrons," says coauthor Chao Jiang, "so they are free to interact with the 2DEG."
Measurements at various voltages in the coupled system showed that the scattering mechanism is short-range, an idea verified by a simple model with a constant scattering potential.
"For the first time, we have clarified that the mechanism of electron scattering in this type of quantum dot system is short-range," says Chao. "The result is particularly significant for the future designing of very efficient quantum-dot-based devices."
###
The article, "Short Range Scattering Mechanism of Type-II GaSb/GaAs Quantum Dots on the Transport Properties of Two-dimensional Electron Gas" by Chao Jiang, Guodong Li, Hong Yin (National Center for Nanoscience and Technology, China), Qinsheng Zhu (Chinese Academy of Science) and Hiroyuki Sakaki (Toyota Technological Institute) appears in the Journal of Applied Physics. http://link.aip.org/link/japiau/v108/i4/p043702/s1
Journalists may request a free PDF of this article by contacting jbardi@aip.org
ABOUT JOURNAL OF APPLIED PHYSICS
Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: http://jap.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.
END
ELSE PRESS RELEASES FROM THIS DATE:
2010-10-21
WASHINGTON, D.C., (Oct. 20, 2010) -- Just as landscape photographs shot in low-angle light dramatically accentuate subtle swales and mounds, depositing metal vapors at glancing angles turns a rough surface into amazing nanostructures with a vast range of potential properties.
For decades, vapor deposition has been a standard technique for creating modern microelectronic circuits. But nearly all of industry's efforts have been devoted to making structures as flat and smooth as possible. Rather than placing metal sources in the high-noon position used to make featureless ...
2010-10-21
WASHINGTON, D.C., (Oct. 20, 2010) -- A team of researchers in North Carolina has discovered that lubricin, a synovial fluid glycoprotein, reduces wear to bone cartilage. This result, which has implications for the treatment of sufferers of osteoarthritis, will be presented today at the AVS 57th International Symposium & Exhibition, taking place this week at the Albuquerque Convention Center in New Mexico.
Osteoarthritis is the most common form of arthritis, the degenerative joint disease. It mostly affects cartilage, the slippery tissue that covers the ends of bones ...
2010-10-21
WASHINGTON, D.C., (Oct. 20, 2010) -- The capture and storage of carbon dioxide in deep geologic formations, a strategy for minimizing the impacts of greenhouse gases on global warming, may currently be technologically feasible. But one key question that must be answered is the ability of subsurface materials to maintain their integrity in the presence of supercritical carbon dioxide -- a fluid state in which the gas is condensed at high temperature and pressure into a liquid.
A research team at the Pacific Northwest National Laboratory has developed tools in EMSL, a ...
2010-10-21
PROVIDENCE, R.I. [Brown University] — The JC polyomavirus doesn't strike very often, but it's a mean bug that preys on people with weakened immune systems, including people with AIDS, and almost always kills them. Now an international team of scientists at Brown University, the University of Tübingen in Germany, and Imperial College in London has found a potential Achilles Heel and painted a target on it: The virus must bind to a very specific sugar molecule dangling from the side of the brain cells it attacks.
Like the rebel forces in the 1977 classic movie Star Wars, ...
2010-10-21
The last two decades have seen tremendous progress in understanding the genetic basis of human brain disorders. Research developments in this area have revealed fundamental insights into the genes and molecular pathways that underlie neurological and psychiatric diseases. In a new series of review articles published by Cell Press in the October 21 issue of the journal Neuron, experts in the field discuss exciting recent advances in neurogenetics research and the potential implications for the treatment of these devastating disorders.
Genetic discoveries have transformed ...
2010-10-21
NEW YORK (Oct. 20, 2010) -- In a report published in the Oct. 20 issue of Science Translational Medicine, researchers at NewYork-Presbyterian Hospital/Weill Cornell Medical Center say animal and human data suggest gene therapy to the brain may be able to treat patients with major depression who do not respond to traditional drug treatment.
The researchers hope to rapidly translate their findings into a human clinical trial using the same kind of gene therapy modality the investigators have pioneered to treat Parkinson's disease. A 45-patient randomized blinded phase II ...
2010-10-21
(Boston) - Despite the promising results of the "Placement of Aortic Transcatheter Valves (PARTNER) trial," featured in the Oct. 21 issue of the New England Journal of Medicine, a cardiothoracic surgeon from Boston Medical Center (BMC) believes that surgical aortic-valve replacement should remain the standard treatment of aortic stenosis. In the accompanying editorial, the author argues that Transcatheter aortic-valve implantation (TAVI) should be reserved for patients at inordinately high risk who are not suitable candidates for surgery and who have decreased life expectancy. ...
2010-10-21
The evolution of complex life is strictly dependent on mitochondria, the tiny power stations found in all complex cells, according to a new study by Dr Nick Lane, from UCL (University College London), and Dr William Martin, from the University of Dusseldorf.
"The underlying principles are universal. Energy is vital, even in the realm of evolutionary inventions," said Dr Lane, UCL Department of Genetics, Evolution and Environment. "Even aliens will need mitochondria."
For 70 years scientists have reasoned that evolution of nucleus was the key to complex life. Now, in ...
2010-10-21
In a galaxy far away, an exceptionally massive black hole is traveling around a massive star in an unusually tight orbit. Also odd, the star is not as bright as it should be.
Astronomers have puzzled over this X-ray binary system, named M33 X-7, but no one could explain all of its features. Now a Northwestern University research team has.
The researchers have produced a model of the system's evolutionary history and formation that explains all of the system's observational characteristics: the tight orbit, the large masses of the star and black hole, the X-ray luminosity ...
2010-10-21
New space research published this week (Thursday 21 October) in the journal Nature, has settled decades of scientific debate. Researchers from the University of California (UCLA) and British Antarctic Survey (BAS) have found the final link between electrons trapped in space and the glow of light from the upper atmosphere known as the diffuse aurora. The research will help us understand 'space weather', with benefits for the satellite, power grid and aviation industries, and how space storms affect the Earth's atmosphere from the top down.
Scientists have long understood ...
LAST 30 PRESS RELEASES:
[Press-News.org] Short-range scattering in quantum dots
Discovery advances novel devices