(Press-News.org) Scientist from Dortmund, Helsinki, Potsdam, and the ESRF have revealed details of the microscopic atomic structure of water under extreme conditions. The results have now been published in the Proceedings of the National Academy of Sciences of the USA.
Liquid water remains a mystery even after decades of dedicated scientific investigations and researchers still struggle to fully describe its unusual structure and dynamics. At high temperatures and high pressures, water is in the so called supercritical state and exhibits a number of peculiar characteristics that are very unlike from water at ambient conditions. In this state water is a very aggressive solvent, enabling chemical reactions impossible otherwise, e.g. the oxidization of hazardous waste or the conversion of aqueous biomass streams into clean water and gases like hydrogen and carbon dioxide.
High temperature and high pressure conditions can also be found inside the Earth, in its lower crust and upper mantle. Here, the unique properties of supercritical water have been believed to play a key role in the transfer of mass and heat as well as in the formation of ore deposits and volcanoes. Supercritical water is even thought to have contributed to the origin of life.
Knowledge of the structural properties of water on an atomic scale under these extreme conditions of high temperature and high pressure may become very helpful in understanding these processes, says Christoph Sahle, from the Department of Physics at the University of Helsinki and a member of the research team behind the new results.
Spectroscopic investigations confirm previous theoretical model
Now, a research team of scientists from the Technische Universität Dortmund, Germany, the University of Helsinki, Finland, the Deutsches GeoForschungsZentrum in Potsdam, Germany, and the European Synchrotron Radiation Facility (ESRF), Grenoble, France, have used x-ray spectroscopy to study the structural properties of water in the supercritical state.
Conventional spectroscopic analyses can provide key insights into the atomic structure of a substance, however, these techniques are not well suited to studying water under supercritical conditions because of the complicated sample environments in which supercritical water has to be contained. Using the intense x-ray radiation from the ESRF for inelastic x-ray scattering spectroscopy and a new technique that makes it possible to look at the chemistry of water inside a complex environment together with a quantum mechanical modeling framework known as density functional theory, the group of scientists has made these spectroscopic investigations of water at high temperature and high pressure feasible.
The researchers found that the measured inelastic x-ray scattering spectra evolve systematically from liquid-like at ambient conditions to more gas-like at high temperatures and pressures. To learn more about the local atomic structure of water at the tested conditions, theoretical inelastic x-ray scattering spectra from computer simulations were calculated and compared to the experimental data. All features found in the experimental data and the systematic changes of these features as a function of temperature and pressure could be reproduced by the calculation.
Based on this close resemblance of the calculated and measured data, the authors extracted detailed information about the atomic structure and bonding. They could show that, according to the theoretical model, the microscopic structure of water remains homogeneous throughout the range of examined temperatures and pressures.
The presented findings also implicate means to study unknown disordered structures and samples under extreme conditions on an atomic scale in depth even when other structural probing techniques fail.
###
Read more: Microscopic Structure of Water at Conditions of the Earth's Crust and Mantle, http://www.pnas.org/content/early/2013/03/07/1220301110
Additional information:
Christoph Sahle
tel. 358-9-191-59641
Yours truly,
Minna Meriläinen-Tenhu
Press officer
University of Helsinki
minna.merilainen@helsinki.fi END
CHICAGO --- A surprisingly high number of women have postpartum depressive symptoms, according to a new, large-scale study by a Northwestern Medicine® researcher.
This is the largest scale depression screening of postpartum women and the first time a full psychiatric assessment has been done in a study of postpartum women who screened positive for depression.
The study, which included a depression screening of 10,000 women who had recently delivered infants at single obstetrical hospital, revealed a large percentage of women who suffered recurrent episodes of major ...
New Rochelle, NY, March 14, 2013—Severe chronic pain associated with conditions such as bladder pain syndrome/interstitial cystitis often require the use of opioid medication, with the risk of dependency and serious adverse reactions. An alternative treatment strategy increases the levels of a naturally occurring painkiller in and around the nerves that deliver pain signals to the bladder. This new therapeutic approach is described in an article in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Human ...
MANHATTAN, KAN. -- Kansas State University civil engineers are developing the right mix to reduce concrete's carbon footprint and make it stronger. Their innovative ingredient: biofuel byproducts.
"The idea is to use bioethanol production byproducts to produce a material to use in concrete as a partial replacement of cement," said Feraidon Ataie, doctoral student in civil engineering, Kabul, Afghanistan. "By using these materials we can reduce the carbon footprint of concrete materials."
Concrete is made from three major components: portland cement, water and aggregate. ...
Completion rates for the human papillomavirus (HPV) vaccine series across both genders continue to remain alarmingly low nearly seven years after its introduction, suggesting that better patient education and increased public vaccine financing programs are needed, according to new research from the University of Texas Medical Branch (UTMB).
The researchers report "startling" trends in a series of three separate studies published in Cancer, Human Vaccines & Immunotherapeutics and Vaccine.
Using data from the 2010 National Health Interview Survey, an annual cross-sectional ...
DURHAM, NC – A potentially lethal fungal infection appears to gain virulence by being able to anticipate and disarm a hostile immune attack in the lungs, according to findings by researchers at Duke Medicine.
Defense mechanisms used by the fungus Cryptococcus neoformans enable it to lead to fatal meningitis, which is one of the opportunistic infections often associated with death in HIV/AIDS patients, organ transplant recipients, diabetics and other immunosuppressed patients. In describing the complex process of how C. neoformans averts destruction in the lungs of mice, ...
INDIANAPOLIS -- Innovative medical records software developed by geriatricians and informaticians from the Regenstrief Institute and the Indiana University Center for Aging Research will provide more personalized health care for older adult patients, a population at significant risk for mental health decline and disorders.
A new study published in eGEMs, a peer-reviewed online publication recently launched by the Electronic Data Methods Forum, unveils the enhanced Electronic Medical Record Aging Brain Care Software, an automated decision-support system that enables care ...
ROCHESTER, Minn. -- Collaborators from Mayo-Illinois Alliance for Technology Based Healthcare have developed a new, single molecule test for detecting methylated DNA. Methylation -- the addition of a methyl group of molecules to a DNA strand -- is one of the ways gene expression is regulated. The findings appear in the current issue of Scientific Reports (Nature Publishing Group).
"While nanopores have been studied for genomic sequencing and screening analysis, this new assay can potentially circumvent the need for some of the current processes in evaluating epigenetics-related ...
Rice University researchers have found a way to divide and modify enzymes to create what amounts to a genetic logic gate.
Biochemist Matthew Bennett and graduate student David Shis created a library of AND gates by mutating a protein from a bacterial virus. The well-understood protein known as T7 RNA polymerase (RNAP) is a strong driver of transcription in cells.
Their discovery should help overcome a bottleneck in the development of synthetic gene networks that mimic digital circuitry. These networks could become diagnostic systems that look for signs of disease and, ...
Disarming One of the Deadliest Pathogens
Francisella tularensis, the cause of tularemia and one of the deadliest respiratory pathogens in existence, is considered a potential biological weapon because it is readily aerosolized and exhibits a high degree of infectivity and lethality in humans. While a live attenuated vaccine strain has been developed, it remains unlicensed because scientists have been unable to understand the basis for its attenuated virulence. In an attempt to find an acceptable live attenuated vaccine strain, researchers from Harvard Medical School ...
For the first time, a UCLA team has used a technique normally employed in treating brain aneurysms to treat severe, life-threatening irregular heart rhythms in two patients.
This unique use of the method helped stop ventricular arrhythmias — which cause "electrical storms" — that originated in the septum, the thick muscle that separates the heart's two ventricles. This area is virtually impossible to reach with conventional treatment.
The research is published in the February issue of Heart Rhythm, the official journal of the Heart Rhythm Society, and is highlighted ...