(Press-News.org) VIDEO:
There are new clues in the search to rediscover the mysterious Maya Blue formula.
Click here for more information.
The recipe and process for preparing Maya Blue, a highly-resistant pigment used for centuries in Mesoamerica, were lost. We know that the ingredients are a plant dye, indigo, and a type of clay known as palygorskite, but scientists do not know how they were 'cooked' and combined together. Now, a team of chemists from the University of Valencia and the Polythecnic University of Valencia (Spain) have come up with a new hypothesis about how it was prepared.
Palace walls, sculptures, codices and pieces of pottery produced by the ancient Maya incorporate the enigmatic Maya Blue. This pigment, which was also used by other Mesoamerican cultures, is characterised by its intense blue colour but, above all, by the fact that it is highly resistant to chemical and biological deterioration. Indeed, it was used centuries ago and when it is analysed now it appears virtually unchangeable.
There is no document that verifies how this paint was prepared and so it remains a mystery. Archaeologists and scientists have sought to uncover the mystery in recent years but it seems that researchers cannot come to an agreement.
The dominant theory proposes that there is a single type of Maya Blue that was also prepared in a unique way and that a specific type of bond binds the two components: one organic component, indigo -the dye used for denim that is obtained from the Indigofera suffruticosa plant in Mesoamerica– and another inorganic component, palygorskite, a type of clay characterised by its crystal structure full of internal channels.
But the work of a team from the University of Valencia (UV) and the Polytechnic University of Valencia (UPV) seem to contradict this 'monoist' version. "We detected a second pigment in the samples, dehydroindigo, which must have formed through oxidation of the indigo when it underwent exposure to the heat that is required to prepare Maya Blue," stated Antonio Doménech, a UV researcher.
"Indigo is blue and dehydroindigo is yellow," the expert explained, "therefore the presence of both pigments in variable proportions would justify the more or less greenish tone of Maya Blue. It is possible that the Maya knew how to obtain the desired hue by varying the preparation temperature, for example heating the mixture for more or less time or adding more of less wood to the fire."
Another of the unsolved questions is how the dye molecules are distributed in palygorskite's crystal network. According to some scientists, the indigo adheres to the exterior of the clay structure with the 'brick' shape although it could also form a sort of 'cover' on the entrance to the channels.
However, other researchers believe that the indigo penetrates into the channels. This is the theory supported by the team from Valencia that has just published a study in the "Microporous and Mesoporous Materials" journal on the reactions that could be behind the formation of the blue pigment.
Two-stage process
The results reveal that two stages occur when both components are heated to temperatures between 120 and 180 ºC. In the first and fastest of the two stages water evaporates from the palygorskite and the indigo bonds to the clay, although a part oxidises and forms dehydroindigo.
In the second stage it would appear that the dye disperses through the channels in the clay. "The process is similar to what happens when we pour a drop of ink into a glass of water," Doménech said, drawing a comparison, although he acknowledges that "this is a hypothesis" at present.
The researcher's team, like other groups in other parts of the world, is also investigating the secret of the unknown chemical bonds that bind the organic to the inorganic component. These bonds are the reason behind Maya Blue's resistance.
In addition to palaces and buildings of the Maya nobility, this pigment is traditionally associated with ritual ceremonies conducted by priests, and may even have been used during human sacrifices. Containers holding traces of the pigment found at the bottom of some natural and man-made wells on the Yucatán peninsula point to this ceremonial use.
Studies such as the one published by US anthropologists in 2008 on a bowl found in the Sacred Cenote of Chichén Itzá led some media outlets to state that the mystery of Maya Blue had been solved. "The bowl contained Maya Blue mixed with copal incense so the simplified conclusion was that it was only prepared by warming incense," stated Doménech.
The researcher believes that the composition and function of Maya Blue could have varied down through the centuries: "Although quite a few samples would be required, it could be possible to establish the evolution in its properties and preparation throughout the Maya culture from approximately 150 B.C. to 800 A.D., in such a way that we could establish a chronology based on analysing the pigment. This provides a far more 'flexible' view of this culture, breaking with that traditional monolithic view of inflexible ritualism."
Small greenish balls in La Blanca
In support of this view, the team also recently found other pigments that are different from Maya Blue but follow the same pattern of a plant dye combined with clay. They found small greenish balls with this material in the ancient Maya city of La Blanca, modern day Guatemala, and it is assumed they were used to plaster and decorate the walls of palatial buildings.
"These materials were certainly not within the reach of the common people but they signal a more 'everyday' use of the pigments that would not have had to be restricted to ritual or ceremonial activities," Doménech pointed out and said by way of conclusion: "Maya Blue can be considered a polyfunctional material as it can combine different organic components with an inorganic carrier, which, in addition, can be distributed and react differently, thereby producing functions that are also different."
###
References:
Antonio Doménech, María Teresa Doménech-Carbó, Laura Osete-Cortina, Noemí Montoya. "Application of solid-state electrochemistry techniques to polyfunctional organic-inorganic hybrid materials: The Maya Blue problem". Microporous and Mesoporous Materials 166 (15): 123, 2013.
New clues in the search to rediscover the mysterious Maya Blue formula
2013-04-02
ELSE PRESS RELEASES FROM THIS DATE:
LSUHSC research discoveries shed light on common STI
2013-04-02
New Orleans, LA – Research led by David H. Martin, MD, Professor and Chief of Infectious Diseases at LSU Health Sciences Center New Orleans, has found that a common sexually transmitted infection-causing parasite "cultivates" bacteria beneficial to it, changing thinking about which comes first–infection or bacteria. The researchers also discovered a previously unknown species of these bacteria. The research was published ahead of print online in Advance Access in the Journal of Infectious Diseases, and was published online April 2, 2013 in Research Highlights in Nature ...
Sampling of embryonic DNA after IVF without biopsy
2013-04-02
Cambridge, UK, April 2, 2013 – Preimplantation genetic diagnosis (PGD) technologies allow identification of genetic disorders in human preimplantation embryos after in vitro fertilization (IVF) and before the embryo is transferred back to the patient. This technique allows couples with a high-risk of passing on inherited diseases, to increase their chances of having a healthy baby. Despite the theoretical benefits of PGD, clinical outcomes using these technologies vary, possibly because of the need to remove one or more cells from the embryo using biopsy.
In a recent ...
Remaining unnoticed for 100 years, a Kyrgyz onion species strikes with its beauty
2013-04-02
Situated at the foothills of the Western Tian-Shan, Kyrgyzstan is home to a diverse range of vascular plants, many of which are endemic and can only be found in very narrowly circumscribed areas. Such is the case for the onion species Allium spathulatum that had long remained undetected in spite of living within the famous Sary-Chelek Nature Reserve. Even in close proximity to the headquarters it remained unnoticed until it was finally described in 1998.
The species occurs in the low-altitude forest zone, between 1600 and 1700 m a.s.l., dwelling in river valleys, on open ...
Fast track to mouse modeling
2013-04-02
Scientists use genetically modified laboratory mice to investigate the underlying mechanisms of diseases. These "knockout" mice carry genes or gene regions that are thought to trigger diseases.
For laboratories, the knockout technique requires a lot of time and effort. "Scientists start by engineering a genetic defect into embryonic stem cells," explains Prof. Wolfgang Wurst, who carries out research at Technische Universität München (TUM) and Helmholtz Zentrum München. "Then they implant the manipulated stem cells into a mouse embryo."
Genetic defects made to order
After ...
Reviewing the work of 1 of the greatest beetle collectors: Napoleon's General Dejean
2013-04-02
Two Canadian scientists have undertaken the challenging task to bring up to date the catalogues written by one of the most passionate collectors of beetles, Coleoptera, in the 19th century, Pierre Dejean. Dr. Yves Bousquet and Dr. Patrice Bouchard, who work with the Canadian National Collection of Insects, Arachnids and Nematodes, have now produced a pioneering detailed review of the important nomenclatural and taxonomic data in these rich publications. Two articles analyzing the Coleoptera genera in the second (1833) and third (1836) catalogues of Dejean's collection were ...
Vitamin P as a potential approach for the treatment of damaged motor neurons
2013-04-02
Biologists from the Ruhr-Universität Bochum have explored how to protect neurons that control movements from dying off. In the journal "Molecular and Cellular Neuroscience" they report that the molecule 7,8-Dihydroxyflavone, also known as vitamin P, ensures the survival of motor neurons in culture. It sends the survival signal on another path than the molecule Brain Derived Neurotrophic Factor (BDNF), which was previously considered a candidate for the treatment of motoneuron diseases or after spinal cord damage. "The Brain Derived Neurotrophic Factor only had a limited ...
Putting larval cobia to the acid test
2013-04-02
MIAMI – April 2, 2013 – Ocean acidification, which occurs as CO2 is absorbed by the world's oceans, is a source of concern for marine scientists worldwide. Studies on coral, mollusks, and other ocean denizens are helping to paint a picture of what the future might entail for specific species, should carbon emissions continue to increase.
In a new study published in Global Change Biology, University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science researchers Sean Bignami, Su Sponaugle, and Robert Cowen are the first to study the effects of acidification ...
3-D scaffolds a new tool to fight cancer
2013-04-02
Porous polymer scaffolds fabricated to support the growth of biological tissue for implantation may hold the potential to greatly accelerate the development of cancer therapeutics.
Researchers at Rice University and the University of Texas MD Anderson Cancer Center in Houston and Mount Sinai Medical Center in New York reported this week that three-dimensional scaffolds used to culture Ewing's sarcoma cells were effective at mimicking the environment in which such tumors develop.
Their research appears online this week in the Proceedings of the National Academy of ...
CAMH study shows mental illness associated with heavy cannabis use
2013-04-02
People with mental illnesses are more than seven times more likely to use cannabis weekly compared to people without a mental illness, according to researchers from the Centre for Addiction and Mental Health (CAMH) who studied U.S. data.
Cannabis is the most widely used illicit substance globally, with an estimated 203 million people reporting use. Although research has found links between cannabis use and mental illness, exact numbers and prevalence of problem cannabis use had not been investigated.
"We know that people with mental illness consume more cannabis, ...
Switching to a power stroke enables a tiny but important marine crustacean to survive
2013-04-02
Olympic swimmers aren't the only ones who change their strokes to escape competitors. To escape from the jaws and claws of predators in cold, viscous water, marine copepods switch from a wave-like swimming stroke to big power strokes, a behavior that has now been revealed thanks to 3-D high-speed digital holography.
Copepods are tiny crustaceans found in nearly every aquatic environment on Earth. By some estimates, they are the most abundant animals on the planet.
Their change in stroke in cold water helps them escape a slew of predators, from larval fish to crabs, ...