PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Adhesive force differences enable separation of stem cells to advance therapies

Sticky signature

2013-04-08
(Press-News.org) A new separation process that depends on an easily-distinguished physical difference in adhesive forces among cells could help expand production of stem cells generated through cell reprogramming. By facilitating new research, the separation process could also lead to improvements in the reprogramming technique itself and help scientists model certain disease processes.

The reprogramming technique allows a small percentage of cells – often taken from the skin or blood – to become human induced pluripotent stem cells (hiPSCs) capable of producing a wide range of other cell types. Using cells taken from a patient's own body, the reprogramming technique might one day enable regenerative therapies that could, for example, provide new heart cells for treating cardiovascular disorders or new neurons for treating Alzheimer's disease or Parkinson's disease.

But the cell reprogramming technique is inefficient, generating mixtures in which the cells of interest make up just a small percentage of the total volume. Separating out the pluripotent stem cells is now time-consuming and requires a level of skill that could limit use of the technique – and hold back the potential therapies.

To address the problem, researchers at the Georgia Institute of Technology have demonstrated a tunable process that separates cells according to the degree to which they adhere to a substrate inside a tiny microfluidic device. The adhesion properties of the hiPSCs differ significantly from those of the cells with which they are mixed, allowing the potentially-therapeutic cells to be separated to as much as 99 percent purity.

The high-throughput separation process, which takes less than 10 minutes to perform, does not rely on labeling technologies such as antibodies. Because it allows separation of intact cell colonies, it avoids damaging the cells, allowing a cell survival rate greater than 80 percent. The resulting cells retain normal transcriptional profiles, differentiation potential and karyotype.

"The principle of the separation is based on the physical phenomenon of adhesion strength, which is controlled by the underlying biology," said Andrés García, the study's principal investigator and a professor in Georgia Tech's Woodruff School of Mechanical Engineering and the Petit Institute for Bioengineering and Bioscience. "This is a very powerful platform technology because it is easy to implement and easy to scale up."

The separation process will be described April 7 in the advance online publication of the journal Nature Methods. The research was supported by the National Institutes of Health (NIH) and the National Science Foundation (NSF), supplemented by funds from the American Recovery and Reinvestment Act (ARRA).

"The scientists applied their new understanding of the adhesive properties of human pluripotent stem cells to develop a quick, efficient method for isolating these medically important cells," said Paula Flicker, of the National Institutes of Health's National Institute of General Medical Sciences, which partly funded the research. "Their work represents an innovative conversion of basic biological findings into a strategy with therapeutic potential."

An improved separation technique is essential for converting the human induced pluripotent stem cells produced by reprogramming into viable therapies, said Todd McDevitt, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, and director of Georgia Tech's Stem Cell Engineering Center.

"For research purposes, depending on labeling reagents for separation is not a major problem," said McDevitt, one of the paper's co-authors. "But when we move into commercialization and manufacturing of cell therapies for humans, we need a technology approach that is unbiased and able to be scaled up."

The separation technique, called micro stem cell high-efficiency adhesion-based recovery (µSHEAR), will allow standardization across laboratories, providing consistent results that don't depend on the skill level of the users. "Because of the engineering and technology involved, and the characterization work, we now have a technology that is readily transferrable," McDevitt said.

The µSHEAR process grew out of an understanding of how cells involved in the reprogramming process change morphologically as the process proceeds. Using a spinning disk device, the researchers tested the adhesive properties of the hiPSCs, the parental somatic cells, partially-reprogrammed cells and reprogrammed cells that had begun differentiating. For each cell type, they measured its "adhesive signature" – the level of force required to detach the cells from a substrate that had been coated with specific proteins.

The research team, which included Georgia Tech postdoctoral fellows Ankur Singh and Shalu Suri, tested their technique in microfluidic devices developed in collaboration with Hang Lu, a professor in Georgia Tech's School of Chemical and Biomolecular Engineering.

In the testing, cells from the culture were first allowed to attach to the substrate before being subjected to the flow of buffer fluid. Cells with a lower adhesive signature detached from the substrate at lower flow rates. By varying the flow rate, the researchers were able to separate specific types of cells, allowing production of stem cell cultures with purity as high as 99 percent – from mixtures in which those cells accounted for only a few percent of the total.

"At different stages of reprogramming, we see differences in the molecular composition and distribution of the cellular structures that control adhesion force," García explained. "Once we know the range of adhesive forces for each cell type, we can apply those narrow ranges to select the populations that come off in each range."

Using inexpensive disposable "cassettes," the microfluidic system could be scaled up to increase the volume of cells produced and to provide specific separations, García noted.

Unlike existing labeling techniques, the new separation process works on cell colonies, avoiding the need to risk damaging cells by breaking up colonies for separation. The separation process has been tested with both reprogrammed blood and skin cells. Cells were provided for testing by ArunA Biomedical, a company based in Athens, Ga., founded by University of Georgia professor Steven Stice.

Beyond the direct application in producing stem cells, the separation technique could also help scientists with other research in which cells need to be separated – including potential improvements in the reprogramming technique, which won the Nobel Prize for medicine in 2012.

"Cell reprogramming has been a black box," said McDevitt. "You start the reprogramming process, and when the cells are fully reprogrammed, you can pick them out visually. But there are really interesting scientific questions about this process, and by isolating cells undergoing reprogramming, we may be able to make new discoveries about how the process occurs."



INFORMATION:



In addition to those already mentioned, the project also included graduate student Ted Lee and research technician Marissa Cooke of Georgia Tech, researcher Jamie Chilton of ArunA, and Weiqiang Chen and Jianping Fu of the University of Michigan.

This work was supported by an ARRA supplement to the National Institutes of Health (NIH) award R01 GM065918 and R43 NS080407, the Stem Cell Engineering Center at Georgia Tech, a Sloan Foundation Fellowship, by the National Science Foundation under award DBI-0649833 and an ARRA sub-award under grant RC1CA144825, and by NSF award CMMI-1129611, the Georgia Tech-Emory Center for Regenerative Medicine (GTEC) and the Parker H. Petit Institute for Bioengineering and Bioscience at Georgia Tech. Any conclusions are those of the authors and do not necessarily represent the official positions of the NIH or NSF.



ELSE PRESS RELEASES FROM THIS DATE:

Retinoic acid gradient visualized for the first time in an embryo

2013-04-08
In a ground-breaking study, researchers from the RIKEN Brain Science Institute in Japan report a new technique that allows them to visualize the distribution of retinoic acid in a live zebrafish embryo, in real-time. This technique enabled them to observe two concentration gradients going in opposing directions along the head-to-tail axis of the embryo, thus providing long-awaited evidence that retinoic acid is a morphogen. The report, published today in the journal Nature, puts an end to a long-standing debate around the presence of retinoic acid gradients across the ...

Researchers shine light on how stress circuits learn

2013-04-08
Researchers at the University of Calgary's Hotchkiss Brain Institute have discovered that stress circuits in the brain undergo profound learning early in life. Using a number of cutting edge approaches, including optogenetics, Jaideep Bains, PhD, and colleagues have shown stress circuits are capable of self-tuning following a single stress. These findings demonstrate that the brain uses stress experience during early life to prepare and optimize for subsequent challenges. The team was able to show the existence of unique time windows following brief stress challenges ...

Finding genes for childhood obesity

2013-04-08
Researchers have identified four genes newly associated with severe childhood obesity. They also found an increased burden of rare structural variations in severely obese children. The team found that structural variations can delete sections of DNA that help to maintain protein receptors known to be involved in the regulation of weight. These receptors are promising targets for the development of new drugs against obesity. As one of the major health issues affecting modern societies, obesity has increasingly received public attention. Genes, behavior and environment, ...

Final chapter to 60-year-old blood group mystery

2013-04-08
Researchers have uncovered the gene at the root of a human blood group that has remained a mystery for the past 60 years. They showed that a genetic deletion on this gene is responsible for the lack of this blood group in some people. With the discovery of the gene behind the Vel blood group, medical scientists can now develop a more reliable DNA test to identify people who lack this group. This will reduce the risk of severe, and sometimes life threatening, destruction of the Vel-positive donor red blood cells in patients with antibodies against Vel. The genetic basis ...

Low levels of serum bilirubin spell higher lung cancer risk for male smokers

2013-04-08
WASHINGTON, D.C. – Elevated levels of bilirubin in the blood get attention in the clinic because they often indicate that something has gone wrong with the liver. Now researchers have found that male smokers with low levels of the yellow-tinged chemical are at higher risk for lung cancer and dying from the disease. A team led by researchers at The University of Texas MD Anderson Cancer Center reported its findings in a late-breaking abstract at the AACR Annual Meeting 2013 in Washington, D.C. "Our study indicates male smokers with low levels of bilirubin are a high-risk ...

Cleveland Clinic researchers discover new link between heart disease and red meat

2013-04-08
EMBARGOED UNTIL 1 P.M. EDT, APRIL 7, 2013, Cleveland: A compound abundant in red meat and added as a supplement to popular energy drinks has been found to promote atherosclerosis – or the hardening or clogging of the arteries – according to Cleveland Clinic research published online this week in the journal Nature Medicine. The study shows that bacteria living in the human digestive tract metabolize the compound carnitine, turning it into trimethylamine-N-oxide (TMAO), a metabolite the researchers previously linked in a 2011 study to the promotion of atherosclerosis ...

Some patients with incurable tumors and BRCA mutations respond to new 2-drug combination

2013-04-08
WASHINGTON–A novel combination of two drugs has shown anti-cancer activity in patients who had incurable solid tumors and carried a germline mutation in their BRCA genes, Dana-Farber Cancer Institute researchers are reporting at the American Association for Cancer Research annual meeting in Washington, April 6-10. The findings (abstract LB-202) will be released at a press conference on Sunday, April 7, 2 p.m. ET, and later at an oral presentation on Tuesday, April 9, 2 p.m. ET, in Room 153, in the Washington Convention Center. The two oral drugs, sapacitabine and seliciclib, ...

Arrhythmia drug may increase cancer risk

2013-04-08
One of the most widely used medications to treat arrhythmias may increase the risk of developing cancer, especially in men and people exposed to high amounts of the drug. That is the conclusion of a new retrospective study published early online in CANCER, a peer-reviewed journal of the American Cancer Society. The study's results indicate that a potential link between amiodarone and cancer warrants further investigation. Amiodarone was approved in 1985 for the treatment of arrhythmias, or irregular heartbeats. Because the drug is fat-soluble and degrades very slowly, ...

Developmental delays in children following prolonged seizures

2013-04-08
Researchers from the UK determined that developmental delays are present in children within six weeks following convulsive status epilepticus (CSE)—a seizure lasting longer than thirty minutes. The study appearing today in Epilepsia, a journal published by Wiley on behalf of the International League Against Epilepsy (ILAE), suggests that neurodevelopmental impairments continue to be present one year after CSE. CSE is one of the most common neurological emergencies in children. These prolonged seizures can occur with or without fevers (febrile). Studies show that CSE ...

IU study: Higher mercury levels in humans associated with increased risk for diabetes

2013-04-08
BLOOMINGTON, Ind. -- A new study found that higher levels of mercury exposure in young adults increased their risks for type 2 diabetes later in life by 65 percent. The study, led by Indiana University School of Public Health-Bloomington epidemiologist Ka He, is the first to establish the link between mercury and diabetes in humans. The study paints a complicated nutritional picture because the main source of mercury in humans comes from the consumption of fish and shellfish, nearly all of which contain traces of mercury. Fish and shellfish also contain lean protein ...

LAST 30 PRESS RELEASES:

Do firefighters face a higher brain cancer risk associated with gene mutations caused by chemical exposure?

Less than half of parents think they have accurate information about bird flu

Common approaches for assessing business impact on biodiversity are powerful, but often insufficient for strategy design

Can a joke make science more trustworthy?

Hiring strategies

Growing consumption of the American eel may lead to it being critically endangered like its European counterpart

KIST develops high-performance sensor based on two-dimensional semiconductor

New study links sleep debt and night shifts to increased infection risk among nurses

Megalodon’s body size and form uncover why certain aquatic vertebrates can achieve gigantism

A longer, sleeker super predator: Megalodon’s true form

Walking, moving more may lower risk of cardiovascular death for women with cancer history

Intracortical neural interfaces: Advancing technologies for freely moving animals

Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution

“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot

Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows

USC researchers observe mice may have a form of first aid

VUMC to develop AI technology for therapeutic antibody discovery

Unlocking the hidden proteome: The role of coding circular RNA in cancer

Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC

Study reveals widening heart disease disparities in the US

The role of ubiquitination in cancer stem cell regulation

New insights into LSD1: a key regulator in disease pathogenesis

Vanderbilt lung transplant establishes new record

Revolutionizing cancer treatment: targeting EZH2 for a new era of precision medicine

Metasurface technology offers a compact way to generate multiphoton entanglement

Effort seeks to increase cancer-gene testing in primary care

Acoustofluidics-based method facilitates intracellular nanoparticle delivery

Sulfur bacteria team up to break down organic substances in the seabed

Stretching spider silk makes it stronger

Earth's orbital rhythms link timing of giant eruptions and climate change

[Press-News.org] Adhesive force differences enable separation of stem cells to advance therapies
Sticky signature