PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Tortuous paths hamper ion transport

2013-04-08
(Press-News.org) Mobile phone batteries that last longer, car batteries that enable you to drive further, storage that accumulates a lot of energy from wind and solar generators: many applications require better batteries. The research essentially focuses on three aspects here: researchers want to increase the energy density – in other words store more energy in a smaller battery. They are also looking to improve the discharging and charging speed by changing and controlling the material, shape and size of the electrochemically active particles and the structure of the battery electrodes in a targeted fashion. And scientists are working on the durability of the battery in general by trying to understand the degradation mechanisms that shorten the life of batteries. Martin Ebner, a doctoral student from the group headed by Vanessa Wood, a professor at the Department of Information Technology and Electrical Engineering, has been examining the issue of the discharging and charging speed. In order to understand what influences it, he has been researching the microstructure of the electrodes of commercially available and home-made lithium ion batteries. Knowing this also enables us to understand the charging and discharging mechanism better and endeavour to produce optimised electrodes with more efficient batteries in mind.

Hard-to reach microstructure scanned

"Until now, the microstructure has been neglected in battery research because it was difficult to access experimentally," says Ebner. He has managed able to fill this gap with the aid of synchrotron radiation x-ray tomography and Professor Marco Stampanoni's group, which specialises in working with this particular radiation.

"This radiation, which can be produced at the Swiss Light Source at the Paul Scherrer Institute, is very bright and spectrally pure. This allows many high-resolution experiments in a short space of time," says Ebner. It only took around five minutes to study a sample on the TOMCAT beamline as opposed to up to five hours on conventional devices. This meant that Ebner could x-ray many electrode material samples produced under different conditions.

Using the hundreds of gigabytes of data that the x-ray tomography generated, the electroengineer was ultimately able to reconstruct the three-dimensional electrode structure. His paper was recently published in the journal Advanced Energy Materials and the raw data of the sixteen cathodes studied deposited in a freely accessible open-source database.

Small particles on boundary layer

The computer reconstructions reveal that the electrodes comprise numerous particles of different shapes and sizes. While smaller particles appear on the edge of the cathode, larger ones are mostly present in the interior. Moreover, Ebner was also able to demonstrate that some particles can break under very high pressure during production. While this does not have much of an impact on the electrochemistry of the battery, it needs to be taken into consideration when simulating it on the computer, he stresses.

The size, distribution and configuration of the particles, however, have a major influence on a battery's discharging and charging speed. Smaller particles form a compact structure while the structure in large particles tends to be looser and thus provide more pore space. The porosity of the material ultimately determines the battery's energy density and the speed at which the lithium ions surge through the electrodes during charging or discharging.

The flow behaviour of the lithium ions can be described by what is known as tortuosity – the value that indicates the degree of a structure's twistedness. To put it simply, the more twisted the path of the ions through the electrode, the more slowly the battery is charged or discharged and the greater the tortuosity.

Graphite plates hamper ion flow

While round to potato-shaped particles mostly have a positive influence on flow, plate-like ones such as those in the anode, the negative pole, provide unfavourable conditions for rapid charge transport. A lithium battery's anode is mostly made of graphite. This highly conductive material consists of wafer-thin plates that lie on top of one another like roof tiles. Depending on the direction from which the ions hit the graphite plates, the tortuosity can be very high. In order to flow around the tiles, long paths are required, which vastly reduces the discharging and charging speed. Lengthwise, however, the lithium ions cross the graphite without any major detours. The analyses reveal that graphite electrodes already exhibit direction-dependent differences in path length of over 300 per cent with a porosity of forty per cent.

The tortuosity of graphite electrodes might be improved through the use of round graphite particles. The drawback here is that up to seventy per cent of the valuable raw material is wasted during production – one reason why many battery manufacturers still use plate-shaped graphite as an anode material.

Optimising established technique

Lithium ion batteries have been in use with more or less the same base materials since the 1980s. The materials can be processed industrially in large quantities and alternatives that are commonly found as raw materials on Earth are gradually catching on. In the long run, researchers want to understand how the microstructure of the electrodes is formed and how you can influence it positively. One idea is to rely on the self-organisation of the materials used. However, the criterion is and will remain whether the method is feasible and affordable for industry. "We mustn't forget that a battery is a mass product that needs to be producible in large quantities," says Ebner.

INFORMATION:

Literature reference:

Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V. X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes. Advanced Energy Materials 2013. Advance online publication, DOI: 10.1002/aenm.201200932

END



ELSE PRESS RELEASES FROM THIS DATE:

Shedding light on a gene mutation that causes signs of premature aging

2013-04-08
VIDEO: Research from Nathalie Bérubé, Ph.D., Western's Schulich School of Medicine & Dentistry and Lawson Health Research Institute, found that the loss of the gene ATRX increases DNA damage locally in... Click here for more information. Research from Western University and Lawson Health Research Institute sheds new light on a gene called ATRX and its function in the brain and pituitary. Children born with ATRX syndrome have cognitive defects and developmental ...

UPV/EHU researchers propose a new mechanism for cell membrane fission

2013-04-08
This press release is available in Spanish. A study led by the Membrane Nanomechanics group of the Biophysics Unit of the UPV/EHU-University of the Basque Country has made it possible to characterise the functioning of a protein responsible for cell membrane splitting. The results of the study, published in the prestigious journal Science, make it possible to see the basic mechanisms of cell life from a fresh perspective, like the fusion and splitting of cell membranes. What is more, the methodology developed will allow various neuromuscular disorders to be diagnosed. Cells ...

Researchers design drug to restore cell suicide in HPV-related head and neck cancer

2013-04-08
The incidence of head and neck cancer caused by the human papilloma virus (HPV) has tripled since the 1970s and continues to grow; better therapy is needed; This study discovered a new mechanism by which HPV causes head and neck cancer, and the researchers designed a drug that blocks the mechanism; The findings could lead to a safer, more effective therapy for HPV-caused cancer. COLUMBUS, Ohio – Researchers have discovered a new mechanism by which the human papilloma virus (HPV) causes head and neck cancer, and they have designed a drug to block that mechanism. ...

New evidence dinosaurs were strong swimmers

2013-04-08
A University of Alberta researcher has identified some of the strongest evidence ever found that dinosaurs could paddle long distances. Working together with an international research team, U of A graduate student Scott Persons examined unusual claw marks left on a river bottom in China that is known to have been a major travel-way for dinosaurs. Alongside easily identified fossilized footprints of many Cretaceous era animals including giant long neck dinosaur's researchers found a series of claw marks that Persons says indicates a coordinated, left-right, left-right ...

'Extracellular vesicles' may open new opportunities for brain cancer diagnosis and treatment

2013-04-08
Philadelphia, Pa. (April 8, 2013) – The recent discovery of circulating "nano-sized extracellular vesicles" (EVs) carrying proteins and nucleic acids derived from brain tumors may lead to exciting new avenues for brain cancer diagnosis, monitoring, and treatment, according to a special article in the April issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health. The review article by Dr. David Gonda from the laboratory of the corresponding author Dr. Clark ...

Non-invasive mapping helps to localize language centers before brain surgery

2013-04-08
Philadelphia, Pa. (April 8, 2013) – A new functional magnetic resonance imaging (fMRI) technique may provide neurosurgeons with a non-invasive tool to help in mapping critical areas of the brain before surgery, reports a study in the April issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health. Evaluating brain fMRI responses to a "single, short auditory language task" can reliably localize critical language areas of the brain—in healthy people as well ...

Tin nanocrystals for the battery of the future

2013-04-08
This press release is available in German. They provide power for electric cars, electric bicycles, Smartphones and laptops: nowadays, rechargeable lithium ion batteries are the storage media of choice when it comes to supplying a large amount of energy in a small space and lightweight. All over the world, scientists are currently researching a new generation of such batteries with an improved performance. Scientists headed by Maksym Kovalenko from the Laboratory of Inorganic Chemistry at ETH Zurich and Empa have now developed a nanomaterial which enables considerably ...

Penn study finds increased sleep could reduce rate of adolescent obesity

2013-04-08
Philadelphia – Increasing the number of hours of sleep adolescents get each night may reduce the prevalence of adolescent obesity, according to a new study by researchers from the Perelman School of Medicine at the University of Pennsylvania. Results of the study show that fewer hours of sleep is associated with greater increases in adolescent body mass index (BMI) for participants between 14 and 18-years-old. The findings suggest that increasing sleep duration to 10 hours per day, especially for those in the upper half of the BMI distribution, could help to reduce the ...

Rapid climate change and the role of the Southern Ocean

2013-04-08
Scientists from Cardiff University and the University of Barcelona have discovered new clues about past rapid climate change. The research, published this month in the journal Nature Geoscience, concludes that oceanographic reorganisations and biological processes are linked to the supply of airborne dust in the Southern Ocean and this connection played a key role in past rapid fluctuations of atmospheric carbon dioxide levels, an important component in the climate system. The scientists studied a marine sediment core from the Southern Ocean and reconstructed chemical ...

ACMG releases statement on noninvasive prenatal screening

2013-04-08
The American College of Medical Genetics and Genomics (ACMG) has just released an important new Policy Statement on "Noninvasive Prenatal Screening for Fetal Aneuploidy." The Statement can be found in the Publications section of the ACMG website at http://www.acmg.net and will soon be published in the peer-reviewed medical journal, Genetics in Medicine. As background, in recent decades there have been many changes and improvements in prenatal genetic screening and diagnosis. The risk, however, of testing with specimens obtained by invasive procedures such as amniocentesis ...

LAST 30 PRESS RELEASES:

Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution

“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot

Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows

USC researchers observe mice may have a form of first aid

VUMC to develop AI technology for therapeutic antibody discovery

Unlocking the hidden proteome: The role of coding circular RNA in cancer

Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC

Study reveals widening heart disease disparities in the US

The role of ubiquitination in cancer stem cell regulation

New insights into LSD1: a key regulator in disease pathogenesis

Vanderbilt lung transplant establishes new record

Revolutionizing cancer treatment: targeting EZH2 for a new era of precision medicine

Metasurface technology offers a compact way to generate multiphoton entanglement

Effort seeks to increase cancer-gene testing in primary care

Acoustofluidics-based method facilitates intracellular nanoparticle delivery

Sulfur bacteria team up to break down organic substances in the seabed

Stretching spider silk makes it stronger

Earth's orbital rhythms link timing of giant eruptions and climate change

Ammonia build-up kills liver cells but can be prevented using existing drug

New technical guidelines pave the way for widespread adoption of methane-reducing feed additives in dairy and livestock

Eradivir announces Phase 2 human challenge study of EV25 in healthy adults infected with influenza

New study finds that tooth size in Otaria byronia reflects historical shifts in population abundance

nTIDE March 2025 Jobs Report: Employment rate for people with disabilities holds steady at new plateau, despite February dip

Breakthrough cardiac regeneration research offers hope for the treatment of ischemic heart failure

Fluoride in drinking water is associated with impaired childhood cognition

New composite structure boosts polypropylene’s low-temperature toughness

While most Americans strongly support civics education in schools, partisan divide on DEI policies and free speech on college campuses remains

Revolutionizing surface science: Visualization of local dielectric properties of surfaces

LearningEMS: A new framework for electric vehicle energy management

Nearly half of popular tropical plant group related to birds-of-paradise and bananas are threatened with extinction

[Press-News.org] Tortuous paths hamper ion transport