PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Getting CLARITY: Hydrogel process developed at Stanford creates transparent brain

2013-04-11
(Press-News.org) STANFORD, Calif. — Combining neuroscience and chemical engineering, researchers at Stanford University have developed a process that renders a mouse brain transparent. The postmortem brain remains whole — not sliced or sectioned in any way — with its three-dimensional complexity of fine wiring and molecular structures completely intact and able to be measured and probed at will with visible light and chemicals.

The process, called CLARITY, ushers in an entirely new era of whole-organ imaging that stands to fundamentally change our scientific understanding of the most-important-but-least-understood of organs, the brain, and potentially other organs, as well.

The process is described in a paper to be published online April 10 in Nature by bioengineer and psychiatrist Karl Deisseroth, MD, PhD, leading a multidisciplinary team, including postdoctoral scholar Kwanghun Chung, PhD.

"Studying intact systems with this sort of molecular resolution and global scope — to be able to see the fine detail and the big picture at the same time — has been a major unmet goal in biology, and a goal that CLARITY begins to address," Deisseroth said.

"This feat of chemical engineering promises to transform the way we study the brain's anatomy and how disease changes it," said Thomas Insel, MD, director of the National Institute of Mental Health. "No longer will the in-depth study of our most important three-dimensional organ be constrained by two-dimensional methods."

The research in this study was performed primarily on a mouse brain, but the researchers have used CLARITY on zebrafish and on preserved human brain samples with similar results, establishing a path for future studies of human samples and other organisms.

"CLARITY promises to revolutionize our understanding of how local and global changes in brain structure and activity translate into behavior," said Paul Frankland, PhD, a senior scientist in neurosciences and mental health at the Hospital for Sick Children Research Institute in Toronto, who was not involved in the research. Frankland's colleague, senior scientist Sheena Josselyn, PhD, added that the process could turn the brain from "a mysterious black box" into something essentially transparent.

An inscrutable place

The mound of convoluted grey matter and wiring that is the brain is a complex and inscrutable place. Neuroscientists have struggled to fully understand its circuitry in their quest to comprehend how the brain works, and why, sometimes, it doesn't.

CLARITY is the result of a research effort in Deisseroth's lab to extract the opaque elements — in particular the lipids — from a brain and yet keep the important features fully intact. Lipids are fatty molecules found throughout the brain and body. In the brain, especially, they help form cell membranes and give the brain much of its structure. Lipids pose a double challenge for biological study, however, because they make the brain largely impermeable both to chemicals and to light.

Neuroscientists would have liked to extract the lipids to reveal the brain's fine structure without slicing or sectioning, but for one major hitch: removing these structurally important molecules causes the remaining tissue to fall apart.

Prior investigations have focused instead on automating the slicing/sectioning approach, or in treating the brain with organic molecules that facilitate the penetration of light only, but not macromolecular probes. With CLARITY, Deisseroth's team has taken a fundamentally different approach.

"We drew upon chemical engineering to transform biological tissue into a new state that is intact but optically transparent and permeable to macromolecules," said Chung, the paper's first author.

This new form is created by replacing the brain's lipids with a hydrogel. The hydrogel is built from within the brain itself in a process conceptually similar to petrification, using what is initially a watery suspension of short, individual molecules known as hydrogel monomers. The intact, postmortem brain is immersed in the hydrogel solution and the monomers infuse the tissue. Then, when "thermally triggered," or heated slightly to about body temperature, the monomers begin to congeal into long molecular chains known as polymers, forming a mesh throughout the brain. This mesh holds everything together, but, importantly, it does not bind to the lipids.

With the tissue shored up in this way, the team is able to vigorously and rapidly extract lipids through a process called electrophoresis. What remains is a 3-D, transparent brain with all of its important structures — neurons, axons, dendrites, synapses, proteins, nucleic acids and so forth — intact and in place.

Going things one better

CLARITY then goes one better. In preserving the full continuity of neuronal structures, CLARITY not only allows tracing of individual neural connections over long distances through the brain, but also provides a way to gather rich, molecular information describing a cell's function is that is not possible with other methods.

"We thought that if we could remove the lipids nondestructively, we might be able to get both light and macromolecules to penetrate deep into tissue, allowing not only 3-D imaging, but also 3-D molecular analysis of the intact brain," said Deisseroth, who holds the D.H. Chen Professorship.

Using fluorescent antibodies that are known to seek out and attach themselves only to specific proteins, Deisseroth's team showed that it can target specific structures within the CLARITY-modified — or "clarified" — mouse brain and make those structures and only those structures light up under illumination. The researchers can trace neural circuits through the entire brain or explore deeply into the nuances of local circuit wiring. They can see the relationships between cells and investigate subcellular structures. They can even look at chemical relationships of protein complexes, nucleic acids and neurotransmitters.

"Being able to determine the molecular structure of various cells and their contacts through antibody staining is a core capability of CLARITY, separate from the optical transparency, which enables us to visualize relationships among brain components in fundamentally new ways," said Deisseroth, who is one of 15 experts on the "dream team" that will map out goals for the $100 million brain research initiative announced April 2 by President Obama.

And in yet another significant capability from a research standpoint, researchers are now able to destain the clarified brain, flushing out the fluorescent antibodies and repeating the staining process anew using different antibodies to explore different molecular targets in the same brain. This staining/destaining process can be repeated multiple times, the authors showed, and the different data sets aligned with one another.

Opening the door

CLARITY has accordingly made it possible to perform highly detailed, fine-structural analysis on intact brains — even human tissues that have been preserved for many years, the team showed. Transforming human brains into transparent-but-stable specimens with accessible wiring and molecular detail may yield improved understanding of the structural underpinnings of brain function and disease.

Beyond the immediate and apparent benefit to neuroscience, Deisseroth cautioned that CLARITY has leapfrogged our ability to deal with the data. "Turning massive amounts of data into useful insight poses immense computational challenges that will have to be addressed. We will have to develop improved computational approaches to image segmentation, 3-D image registration, automated tracing and image acquisition," he said.

Indeed, such pressures will increase as CLARITY could begin to support a deeper understanding of large-scale intact biological systems and organs, perhaps even entire organisms.

"Of particular interest for future study are intrasystem relationships, not only in the mammalian brain but also in other tissues or diseases for which full understanding is only possible when thorough analysis of single, intact systems can be conducted," Deisseroth said. "CLARITY may be applicable to any biological system, and it will be interesting to see how other branches of biology may put it to use."

###

Other co-authors include undergraduate student Jenelle Wallace; graduate students Sung-Yon Kim, Kelly Zalocusky, Joanna Mattis, Aleksandra Denisin and Logan Grosenick; research assistants Sandhiya Kalyanasundaram, Julie Mirzabekov, Sally Pak and Charu Ramakrishnan; postdoctoral scholars Aaron Andalman, PhD, and Tom Davidson, PhD; former undergraduate student Hannah Bernstein; and former staff scientist Viviana Gradinaru.

The research is supported by the National Institute of Mental Health (grant MH099647); the National Science Foundation; the Simons Foundation; the President and Provost of Stanford University; the Wiegers, Snyder, Reeves, Gatsby and Yu foundations; the DARPA REPAIR program; and the Burroughs Wellcome Fund.

Information about Stanford's Department of Bioengineering, which also supported the work, is available at http://bioengineering.stanford.edu. The department is jointly operated by the School of Engineering and the School of Medicine.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

The Stanford School of Engineering has been at forefront of innovation for nearly a century, creating pivotal technologies and businesses that have transformed the worlds of technology, medicine, energy and communications and laid the foundation for Silicon Valley. The school advances modern science and engineering through teaching and research. The school is home to nine departments, 245 faculty and more than 4,000 students, tackling the world's most pressing problems in areas like human health and environmental sustainability. For more information, visit http://engineering.stanford.edu.

END



ELSE PRESS RELEASES FROM THIS DATE:

Stanford study shows different brains have similar responses to music

2013-04-11
STANFORD, Calif. — Do the brains of different people listening to the same piece of music actually respond in the same way? An imaging study by Stanford University School of Medicine scientists says the answer is yes, which may in part explain why music plays such a big role in our social existence. The investigators used functional magnetic resonance imaging to identify a distributed network of several brain structures whose activity levels waxed and waned in a strikingly similar pattern among study participants as they listened to classical music they'd never heard ...

Pottery reveals Ice Age hunter-gatherers' taste for fish

2013-04-11
Hunter-gatherers living in glacial conditions produced pots for cooking fish, according to the findings of a pioneering new study led by the University of York which reports the earliest direct evidence for the use of ceramic vessels. Scientists from the UK, the Netherlands, Sweden and Japan carried out chemical analysis of food residues in pottery up to 15,000 years old from the late glacial period, the oldest pottery so far investigated. It is the first study to directly address the often posed question "why humans made pots?" The research is published in Nature. The ...

Mining information contained in clinical notes could yield early signs of harmful drug reactions

2013-04-11
STANFORD, Calif. — Mining the records of routine interactions between patients and their care providers can detect drug side effects a couple of years before an official alert from the U.S. Food and Drug Administration, a Stanford University School of Medicine study has found. The study, led by Nigam Shah, MBBS, PhD, assistant professor of medicine, will be published online April 10 in Nature Clinical Pharmacology and Therapeutics. This approach is a step forward in mining patient-based information, as opposed to coded insurance reports or drug-specific databases, to ...

Half of all patient complaints in Australia are about 3 percent of doctors

2013-04-11
Half of all formal patient complaints made in Australia to health ombudsmen concern just 3% of the country's doctors, with 1% accounting for a quarter of all complaints, finds research published online in BMJ Quality & Safety. Doctors complained about more than three times are highly likely to be the subject of a further complaint - and often within a couple of years - the findings show. The problem is unlikely to be confined to Australia, warn commentators, who point out that while regulators often know about these problem doctors, patients usually don't. The researchers ...

Rates of childhood squint surgery have plummeted over past 50 years

2013-04-11
Rates of surgery to correct childhood squint in England have tumbled over the past 50 years, finds research published online in the British Journal of Ophthalmology. But there's still a fivefold difference between the areas with the lowest and highest rates of the procedure, similar to the wide variations in tonsil removal, and it's not clear why, say the authors. Squint (strabismus) is one of the most common eye problems in children, with a prevalence of between 2% and 5%. Risk factors include family history, low birthweight, premature birth, being born to an older ...

The surprising ability of blood stem cells to respond to emergencies

2013-04-11
A research team of Inserm, CNRS and MDC lead by Michael Sieweke of the Centre d'Immunologie de Marseille Luminy (CNRS, INSERM, Aix Marseille Université) and Max Delbrück Centre for Molecular Medicine, Berlin-Buch, today revealed an unexpected role for hematopoietic stem cells: they do not merely ensure the continuous renewal of our blood cells; in emergencies they are capable of producing white blood cells "on demand" that help the body deal with inflammation or infection. This property could be used to protect against infections in patients undergoing bone marrow transplants, ...

First objective measure of pain discovered in brain scan patterns by CU-Boulder study

2013-04-11
For the first time, scientists have been able to predict how much pain people are feeling by looking at images of their brains, according to a new study led by the University of Colorado Boulder. The findings, published today in the New England Journal of Medicine, may lead to the development of reliable methods doctors can use to objectively quantify a patient's pain. Currently, pain intensity can only be measured based on a patient's own description, which often includes rating the pain on a scale of one to 10. Objective measures of pain could confirm these pain reports ...

CPAP improves work productivity for sleep apnea patients

2013-04-11
The study will be presented today (11 April 2013) at the Sleep and Breathing Conference in Berlin, organised by the European Respiratory Society and the European Sleep Research Society. Previous research has demonstrated that people with sleep apnoea are less productive at work, usually due to excessive daytime sleepiness. This study aimed to assess whether continuous positive airway pressure (CPAP) improved productivity at work. The researchers used the Endicott Work Productivity Scale, a questionnaire designed to assess productivity at work, and the Epworth Sleepiness ...

Great white sharks

2013-04-11
MIAMI –April 9, 2013 – Many terrestrial animals are frequently observed scavenging on other animals– whether it is a hyena stealing a lion kill in the Serengeti or a buzzard swooping down on a dead animal. However, documenting this sort of activity in the oceans is especially difficult, and often overlooked in marine food web studies. In a new study published in PLOS ONE titled, "White sharks (Carcharodon carcharias) scavenging on whales and its potential role in further shaping the ecology of an apex predator," Captain Chris Fallows from Apex Expeditions collaborated ...

Extreme algae blooms: The new normal?

2013-04-11
A 2011 record-breaking algae bloom in Lake Erie was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures, scientists have discovered. The researchers also predict that, unless agricultural policies change, the lake will continue to experience extreme blooms. "The factors that led to this explosion of algal blooms are all related to humans and our interaction with the environment," says Bruce Hamilton, program director at the National Science Foundation (NSF), which funded the research ...

LAST 30 PRESS RELEASES:

Megalodon’s body size and form uncover why certain aquatic vertebrates can achieve gigantism

A longer, sleeker super predator: Megalodon’s true form

Walking, moving more may lower risk of cardiovascular death for women with cancer history

Intracortical neural interfaces: Advancing technologies for freely moving animals

Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution

“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot

Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows

USC researchers observe mice may have a form of first aid

VUMC to develop AI technology for therapeutic antibody discovery

Unlocking the hidden proteome: The role of coding circular RNA in cancer

Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC

Study reveals widening heart disease disparities in the US

The role of ubiquitination in cancer stem cell regulation

New insights into LSD1: a key regulator in disease pathogenesis

Vanderbilt lung transplant establishes new record

Revolutionizing cancer treatment: targeting EZH2 for a new era of precision medicine

Metasurface technology offers a compact way to generate multiphoton entanglement

Effort seeks to increase cancer-gene testing in primary care

Acoustofluidics-based method facilitates intracellular nanoparticle delivery

Sulfur bacteria team up to break down organic substances in the seabed

Stretching spider silk makes it stronger

Earth's orbital rhythms link timing of giant eruptions and climate change

Ammonia build-up kills liver cells but can be prevented using existing drug

New technical guidelines pave the way for widespread adoption of methane-reducing feed additives in dairy and livestock

Eradivir announces Phase 2 human challenge study of EV25 in healthy adults infected with influenza

New study finds that tooth size in Otaria byronia reflects historical shifts in population abundance

nTIDE March 2025 Jobs Report: Employment rate for people with disabilities holds steady at new plateau, despite February dip

Breakthrough cardiac regeneration research offers hope for the treatment of ischemic heart failure

Fluoride in drinking water is associated with impaired childhood cognition

New composite structure boosts polypropylene’s low-temperature toughness

[Press-News.org] Getting CLARITY: Hydrogel process developed at Stanford creates transparent brain