PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Small in size, big on power: New microbatteries the most powerful yet

2013-04-17
(Press-News.org) CHAMPAIGN, Ill. — Though they be but little, they are fierce. The most powerful batteries on the planet are only a few millimeters in size, yet they pack such a punch that a driver could use a cellphone powered by these batteries to jump-start a dead car battery – and then recharge the phone in the blink of an eye.

Developed by researchers at the University of Illinois at Urbana-Champaign, the new microbatteries out-power even the best supercapacitors and could drive new applications in radio communications and compact electronics.

Led by William P. King, the Bliss Professor of mechanical science and engineering, the researchers published their results in the April 16 issue of Nature Communications.

"This is a whole new way to think about batteries," King said. "A battery can deliver far more power than anybody ever thought. In recent decades, electronics have gotten small. The thinking parts of computers have gotten small. And the battery has lagged far behind. This is a microtechnology that could change all of that. Now the power source is as high-performance as the rest of it."

With currently available power sources, users have had to choose between power and energy. For applications that need a lot of power, like broadcasting a radio signal over a long distance, capacitors can release energy very quickly but can only store a small amount. For applications that need a lot of energy, like playing a radio for a long time, fuel cells and batteries can hold a lot of energy but release it or recharge slowly.

"There's a sacrifice," said James Pikul, a graduate student and first author of the paper. "If you want high energy you can't get high power; if you want high power it's very difficult to get high energy. But for very interesting applications, especially modern applications, you really need both. That's what our batteries are starting to do. We're really pushing into an area in the energy storage design space that is not currently available with technologies today."

The new microbatteries offer both power and energy, and by tweaking the structure a bit, the researchers can tune them over a wide range on the power-versus-energy scale.

The batteries owe their high performance to their internal three-dimensional microstructure. Batteries have two key components: the anode (minus side) and cathode (plus side). Building on a novel fast-charging cathode design by materials science and engineering professor Paul Braun's group, King and Pikul developed a matching anode and then developed a new way to integrate the two components at the microscale to make a complete battery with superior performance.

With so much power, the batteries could enable sensors or radio signals that broadcast 30 times farther, or devices 30 times smaller. The batteries are rechargeable and can charge 1,000 times faster than competing technologies – imagine juicing up a credit-card-thin phone in less than a second. In addition to consumer electronics, medical devices, lasers, sensors and other applications could see leaps forward in technology with such power sources available.

"Any kind of electronic device is limited by the size of the battery – until now," King said. "Consider personal medical devices and implants, where the battery is an enormous brick, and it's connected to itty-bitty electronics and tiny wires. Now the battery is also tiny."

Now, the researchers are working on integrating their batteries with other electronics components, as well as manufacturability at low cost.

"Now we can think outside of the box," Pikul said. "It's a new enabling technology. It's not a progressive improvement over previous technologies; it breaks the normal paradigms of energy sources. It's allowing us to do different, new things."

The National Science Foundation and the Air Force Office of Scientific Research supported this work. King also is affiliated with the Beckman Institute for Advanced Science and Technology; the Frederick Seitz Materials Research Laboratory; the Micro and Nanotechnology Laboratory; and the department of electrical and computer engineering at the U. of I.



INFORMATION:

Editor's note: To reach William King, call 217-244-3864; email wpk@illinois.edu.

The paper, "High Power Lithium Ion Micro Batteries From Interdigitated Three-Dimensional Bicontinuous Nanoporous Electrodes," is available online at http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2747.html.



ELSE PRESS RELEASES FROM THIS DATE:

Plasma device developed at MU could revolutionize energy generation and storage

2013-04-17
University of Missouri engineer Randy Curry and his team have developed a method of creating and controlling plasma that could revolutionize American energy generation and storage. Besides liquid, gas and solid, matter has a fourth state, known as plasma. Fire and lightning are familiar forms of plasma. Life on Earth depends on the energy emitted by plasma produced during fusion reactions within the sun. However, Curry warns that without federal funding of basic research, America will lose the race to develop new plasma energy technologies. The basic research program was ...

Dying supergiant stars implicated in hours-long gamma-ray bursts

2013-04-17
Three unusually long-lasting stellar explosions discovered by NASA's Swift satellite represent a previously unrecognized class of gamma-ray bursts (GRBs). Two international teams of astronomers studying these events conclude that they likely arose from the catastrophic death of supergiant stars hundreds of times larger than the sun. VIDEO: GRB 101225A, better known as the "Christmas burst, " was an unusually long-lasting gamma-ray burst. Because its distance ...

NASA's Wind mission encounters 'SLAMS' waves

2013-04-17
As Earth moves around the sun, it travels surrounded by a giant bubble created by its own magnetic fields, called the magnetosphere. As the magnetosphere plows through space, it sets up a standing bow wave or bow shock, much like that in front of a moving ship. Just in front of this bow wave lies a complex, turbulent system called the foreshock. Conditions in the foreshock change in response to solar particles streaming in from the sun, moving magnetic fields and a host of waves, some fast, some slow, sweeping through the region. To tease out what happens at that boundary ...

Multicenter study confirms low testosterone in 84 percent of lung cancer patients taking crizotinib

2013-04-17
A previous study by the University of Colorado Cancer Center reported the common side effect of low testosterone in men treated with the recently approved lung cancer agent, crizotinib. A new study published this week in the journal Cancer confirms this finding in a multi-national sample, details the mechanism of reduced testosterone, and provides promising preliminary evidence that widely available hormone replacement therapies can alleviate this side effect in many patients. "This was a wonderful collaboration between multiple centers confirming a side effect that had ...

Memory, the adolescent brain and lying: The limits of neuroscientific evidence in the law

2013-04-17
April 16, 2013 – San Francisco – Brain scans are increasingly able to reveal whether or not you believe you remember some person or event in your life. In a new study presented at a cognitive neuroscience meeting today, researchers used fMRI brain scans to detect whether a person recognized scenes from their own lives, as captured in some 45,000 images by digital cameras. The study is seeking to test the capabilities and limits of brain-based technology for detecting memories, a technique being considered for use in legal settings. "The advancement and falling costs ...

Experiment shows why some stress is good for you

2013-04-17
Overworked and stressed out? Look on the bright side. Some stress is good for you. "You always think about stress as a really bad thing, but it's not," said Daniela Kaufer, associate professor of integrative biology at the University of California, Berkeley. "Some amounts of stress are good to push you just to the level of optimal alertness, behavioral and cognitive performance." New research by Kaufer and UC Berkeley post-doctoral fellow Elizabeth Kirby has uncovered exactly how acute stress – short-lived, not chronic – primes the brain for improved performance. In ...

CT and serum LDH shows promise as survival predictor for some metastatic melanoma patients

2013-04-17
Combining CT imaging findings with baseline serum lactate dehydrogenase levels is showing promise as a way to predict survival in patients with metastatic melanoma being treated with anti-angiogenic therapy. With the hope of predicting patient survival, researchers at the University of Mississippi Medical Center in Jackson and at the Ohio State University Comprehensive Cancer Center in Columbus analyzed CT images and clinical data from 46 patients with metastatic melanoma that were treated with anti-angiogenic therapy. "The analysis found that initial post-therapy CT ...

Radiation dose level affects size of lesions seen on chest CT images

2013-04-17
The estimated size of chest lymph nodes and lung nodules seen on CT images varies significantly when the same nodes or nodules are examined using lower versus higher doses of radiation, a new study shows. The size of lymph nodes and lung nodules is an important determinant of treatment and treatment success. The study, conducted at Massachusetts General Hospital in Boston, used a 3D image processing tool to quantitatively measure the volume of the lymph nodes and lung nodules. "We found that lymph node volumes were estimated at 30% lower in five cases and 10% higher in ...

Iterative reconstruction plus longitudinal dose modulation reduces radiation dose for abdominal CT and save lives

2013-04-17
Radiation dose reduction has moved to the forefront of importance in medical imaging with new techniques being developed in an effort to bring doses down as low as possible. What difference can these techniques make? Researchers at Indiana University School of Medicine aimed to find out. "We conducted a study to quantify dose reduction, comparing two years' worth of data and 11,458 abdomen and pelvic CT exams," said Dr. Jonas Rydberg, lead author of the study. Data on 5,707 consecutive CT abdomen and pelvis exams without iterative reconstruction or longitudinal dose ...

Helping to forecast earthquakes in Salt Lake Valley

2013-04-17
Salt Lake City, Utah -- Salt Lake Valley, home to the Salt Lake City segment of the Wasatch fault zone and the West Valley fault zone, has been the site of repeated surface-faulting earthquakes (of about magnitude 6.5 to 7). New research trenches in the area are helping geologists and seismologists untangle how this complex fault system ruptures and will aid in forecasting future earthquakes in the area. At the annual meeting of the Seismological Society of America (SSA), Christopher DuRoss and Michael Hylland of the Utah Geological Survey will present research today ...

LAST 30 PRESS RELEASES:

Climate intervention techniques could reduce the nutritional value of crops

Mapping resilient supply solutions for graphite, a critical mineral powering energy storage: Rice experts’ take

Effects of sodium glucose cotransporter 2 inhibitors by diabetes status and level of albuminuria

Young people using unregulated nicotine pouches despite health risks

New study finds family and caregivers can help spot post-surgery delirium early

High-impact clinical trials generate promising results for improving kidney health - part 2

More Americans are on dialysis. Could more safely wean off it?

A conservative dialysis strategy and kidney function recovery in dialysis-requiring acute kidney injury

More Americans, especially Black adults, are dying before they can access Medicare benefits

Death Valley plant reveals blueprint for building heat-resilient crops

Racial disparities in premature mortality and unrealized Medicare benefits across US states

Heat- and cold-related mortality burden in the US from 2000 to 2020

Research hints at the potential of pain relief with CBD

Dr. Johnson V. John appointed as a Standing Member of the NIH Musculoskeletal Tissue Engineering (MTE) Study Section

TCF/LEF transcription factors emerge as druggable targets in Wnt signaling, offering new hope for fibrosis and cancer therapies

New alloy design could power solid-state batteries that charge faster and last longer

Discovery to display: FAU unveils the ‘Art of Science’ winners

Achieving electrocatalytic activity toward oxygen reduction reaction based on Ruddlesden-Popper type cathode catalyst for solid oxide fuel cells

Ceramic-based electromagnetic interference shielding materials: mechanisms, optimization strategies, and pathways to next-generation applications

NIH-funded exploratory study to seek possible targets for treating alcohol use disorder

Hanyang University researchers develop of novel high-resolution mechanoluminescent platform technology

Hidden HPV-linked cell type may drive early cervical cancer, scientists report

Metros cut car use in European cities, but trams fall short

Antarctic ice melt triggers further melting: Evidence for cascading feedbacks 9,000 years ago

Colorectal cancer evades immunotherapy using a dual barrier

MIT research finds particles that enhance mRNA delivery could reduce vaccine dosage and costs

Enhancing ocean wind observation accuracy: New rain correction approach for FY-3E WindRAD

New immobilization strategy enables reliable surface plasmon resonance analysis of membrane proteins

Single organic molecule triggers Kondo effect in molecular-scale “Kondo box”

Drug toxicity predicted by differences between preclinical models and humans

[Press-News.org] Small in size, big on power: New microbatteries the most powerful yet