PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Preventing chromosomal chaos: Protein-based genome-stabilizing mechanism discovered

New study, in Nature Communications, reveals key to the 'flexible stability' that is the hallmark of good heredity

2015-09-09
(Press-News.org) Most people are familiar with the double-helix shape that allows genetic information to be packed into a molecule of human DNA. Less well-known is how all this information - which, if laid end-to-end, would stretch some three meters - is packed into the cellular nucleus. The secret of how this crush of genetic code avoids chaos - remaining untangled, correctly compartmentalized, and available for accurate DNA replication - has recently been revealed.

By tracking and analyzing the movement of fluorescently-tagged genomic regions within the nuclei of live cells, an international team has determined that a protein known as lamin A plays a central role in maintaining genomic structural stability.

The researchers - led by Prof. Yuval Garini of Israel's Bar-Ilan University, and with the participation of members of his lab including Dr. Irena Bronshtein-Berger and Dr. Eldad Kepten, then a PhD candidate - have shown how this protein is involved in the formation of "cross-links" that limit genetic material's freedom of movement within the nucleus. This creates a stable and linked polymeric structure that promotes chromosomal integrity and makes normal cellular replication possible.

The team's findings - published on August 24th, 2015 in Nature Communications - present a comprehensive model for explaining the biophysical underpinnings of chromosome dynamics and organization. The study also provides intriguing insight into the pathology of a number devastating human diseases associated with a mutated form of the lamin A protein.

An "Anchor" for Chromatin Organization

"In our lab, we study chromatin - the complex of DNA and proteins that form the chromosome structure within the nucleus," says Garini, a member of Bar-Ilan University's Department of Physics who also heads the University's Institute of Nanotechnology and Advanced Materials. "Chromatin moves dynamically inside the nucleus while, at the same time, remains highly ordered. Our study shows, for the first time, how chromatin movement is regulated by proteins, and how this regulation affects function."

According to Garini, this protein-mediated mechanism is fundamental to the stability of life as we know it.

"Inside the nucleus, extremely long DNA strings create what might be described as a bowl of dynamically-jiggling 'genetic spaghetti'," Garini says. "If this material becomes tangled or knotted, ordered DNA duplication - an important step in normal cell division - cannot occur. Using advanced microscopic techniques, we determined that genomic organization is controlled by inter-chromosomal binding events that 'anchor' chromatin regions to each other to achieve flexible stability."

To help non-scientists visualize what "flexible stability" looks like, Garini suggests the following. "Imagine a length of rope that is randomly compressed into a small space. If, at various points along the rope's length, the rope is linked with clips to other points on the rope, this creates a slightly flexible, yet stably-ordered structure. This stability - created by inter-chromosomal binding events - is what allows chromatin order to be maintained."

Garini says it is not yet clear whether lamin A is solely responsible for stabilizing chromatin structure, or if credit should go to some larger network of associated proteins with which lamin A is associated. However, he asserts, the study does reveal the heretofore unrecognized role of lamin A in chromatin dynamics.

Earlier studies of chromatin have suggested that structural organization may be mediated by the interaction of specific chromosomal domains with the nuclear envelope. However, in the current study, Garini reports that a significant fraction of lamin A's activity occurs throughout the nucleoplasm, demonstrating that this nucleus-wide activity bears significant responsibility for chromatin's structural stability.

Support for the new model was provided by Garini's observation of dramatically different chromatin dynamics when lamin A was removed.

"We engineered lamin-A-deficient cells, and then measured the speed and range of chromatin movement," he says. "As opposed to the slow and localized movement characteristic of cells that contain the lamin A protein, in the deficient cells we observed motion that was fast and highly-dispersed. Such fast and loose chromatin dynamics are a perfect recipe for genetic confusion - and hereditary chaos."

Single-Particle Tracking of Nuclear "Traffic Patterns"

The researchers employed a variety of techniques - drawn from the worlds of biophysics, mathematics, advanced microscopy and genetic engineering - to quantify chromatin dynamics in the presence and absence of the lamin A protein.

"Single particle tracking is a technique that makes it possible to label almost any point in a live cell with a fluorescent marker, then create a 'movie' that reveals its changing position by capturing a series of images over time. In the current study, rather than focusing on just one moving point, we analyzed the simultaneous movement of many DNA sub-units to characterize overall patterns," Garini explains, adding that this methodology is analogous to the traffic analyses created by WAZE and other network-based navigation devices.

"By following hundreds of paths - and by analyzing the results with mathematical tools - some of which were created in our lab - we were able to clarify how the presence of lamin A constrains chromatin movement and promotes genomic organizational stability."

Medical Ramifications

The stability-promoting mechanism discovered by Garini and his colleagues - unlike any model of chromatin organization ever put forward - may have significant implications for the understanding and clinical treatment of disease. Specifically, it may pave the way to new approaches toward conditions associated with mutations in the lamin A protein.

"One disease linked to mutated lamin A is progeria - a rare but heartbreaking disorder that causes children to age rapidly, beginning in their first years of life," Garini says. "Although we have not studied this disease in our lab, it may be possible that the lamin A mutation which is a hallmark of the disease prevents cells from dividing in an orderly way, as explained above."

Mutated lamin A is also a hallmark muscular dystrophy. "It may be that genetic screening for this mutation could someday be used for medical diagnostics," Garini says. "It may also be possible that the new model revealed by our study may help eventually support targeted drug development."

An Unusual, Biophysical Approach

In the meantime, Garini will continue to use the tools of biophysics to characterize how chromatin organization and dynamics contribute to genome-wide stability - an approach that he says is relatively unusual.

"Despite an enormous amount of important research in genetics, very few labs have focused on characterizing how our genetic material is organized in the nucleus, and how this organization contributes to function," he says. "Now, we have a very reasonable explanation - supported by a significant number of observations for how genomic structure is conserved. If this stabilizing mechanism did not exist, our genes - the 'code of the program' that defines life as we know it - might never be passed down to the next generation."

INFORMATION:

Prof. Garini's work was partially supported by a grant from the Israel Science Foundation, as well as a special ISF-ICORE Center of Excellence grant.



ELSE PRESS RELEASES FROM THIS DATE:

Epicolactones -- the 8-step path

2015-09-09
In the latest issue of the journal Nature Chemistry researchers led by Dirk Trauner, Professor of Chemical Biology and Genetics at LMU Munich, describe the biomimetic synthesis of epicolactone, a compound which was first isolated from an endophytic fungus. "What we have accomplished is one of the shortest and most elegant total syntheses of a natural product ever reported," says Trauner, as he and his colleagues have indeed succeeded in producing a highly complex molecular structure in a minimal number of steps. "This is actually very close to being an ideal synthesis - ...

Capturing introns: Targeting rapidly evolving regions of the genome for phylogenetics

2015-09-09
Understanding the evolutionary history of organisms is important for myriad reasons. To name a few, information about relationships between species can be used to guide the classification of biodiversity, inform conservation policies aimed at protecting threatened species, aid in tracking the spread of pathogens, and can even play a role in the discovery of new medicines. Scientists depict the relationships between species with evolutionary trees, also called phylogenies. A phylogeny shows the accumulation of species through time and the relationships between these species, ...

Study points to a possible new pathway toward a vaccine against MRSA

2015-09-09
New research led by NYU Langone Medical Center has uncovered why a particular strain of Staphylococcus aureus -- known as HA-MRSA -- becomes more deadly than other variations. These new findings open up possible new pathways to vaccine development against this bacterium, which the Centers for Disease Control and Preventions says accounts for over 10,000 deaths annually, mostly among hospital patients. In a series of experiments in mice and in human immune cells in the lab, recently published in the journal Nature Communications online Sept. 2, the NYU Langone team found ...

Nearly half of testicular cancer risk comes from inherited genetic faults

2015-09-09
Almost half of the risk of developing testicular cancer comes from the DNA passed down from our parents, a new study reports. The research suggests genetic inheritance is much more important in testicular cancer than in most other cancer types, where genetics typically accounts for less than 20 per cent of risk. The findings suggest testing for a range of genetic variants linked to testicular cancer could be effective in picking out patients who are at substantially increased risk - potentially opening up ways of preventing the disease. Scientists at The Institute ...

Switzerland best place in the world for older people to live

Switzerland best place in the world for older people to live
2015-09-09
UK enters top ten All regions of world represented in lower rankings Experts call for more age specific data about older people's lives Switzerland is the best place in the world for older people to live, closely followed by Norway and Sweden, according to a new report from HelpAge International, working in partnership with the University of Southampton. The Global AgeWatch Index assesses the social and economic wellbeing of the older population in 96 countries around the world. The Index represents 91 per cent of the world's population aged 60 and over, amounting ...

Southern California wildfires show split personalities

2015-09-08
Wildfires have ravaged regions of Southern California at an increasing rate over the past few decades, and scientists from three University of California campuses and partner institutions are predicting that by mid-century, a lot more will go up in flames. In research published today in the journal Environmental Research Letters, the scientists discuss the split-personality nature of Southern California wildfires. They describe two distinct wildfire regimes, those driven by offshore Santa Ana winds that kick up in the fall and non-Santa Ana fires that result primarily ...

Southern California wildfires exhibit split personalities

2015-09-08
Irvine, Calif., Sept. 8, 2015 - Wildfires have ravaged both populated and unpopulated regions of Southern California at an increasing rate over the past few decades, and scientists from three University of California campuses and partner institutions are predicting that by midcentury, as a consequence of climate change causing hotter and drier summers, a lot more will go up in flames. In a paper published today in the journal Environmental Research Letters, the scientists discuss the split-personality nature of Southern California wildfires. They describe two distinct ...

Freebies won't bribe most bloggers into positive reviews

2015-09-08
Bloggers may accept compensation and free products for reviews, but freebies do not necessarily lead to positive endorsements, according to a group of researchers. In a study, most technology bloggers who have accepted compensation, including free products, for reviews actually reported that they feel more empowered in their relationships with companies that pitched them products, rather than feeling indebted to them. "We were concerned with how accepting compensation or products impacted how control mutuality -- where both groups feel that they are winning from the ...

Artificial 'plants' could fuel the future

2015-09-08
Imagine creating artificial plants that make gasoline and natural gas using only sunlight. And imagine using those fuels to heat our homes or run our cars without adding any greenhouse gases to the atmosphere. By combining nanoscience and biology, researchers led by scientists at University of California, Berkeley, have taken a big step in that direction. Peidong Yang, a professor of chemistry at Berkeley and co-director of the school's Kavli Energy NanoSciences Institute, leads a team that has created an artificial leaf that produces methane, the primary component of ...

Shouldering the burden of evolution

2015-09-08
As early humans increasingly left forests and utilized tools, they took an evolutionary step away from apes. But what this last common ancestor with apes looked like has remained unclear. A new study led by researchers at UC San Francisco shows that important clues lie in the shoulder. Humans split from our closest African ape relatives in the genus Pan - including chimpanzees and bonobos - 6 to 7 million years ago. Yet certain human traits resemble the more distantly related orangutan or even monkeys. This combination of characteristics calls into question whether the ...

LAST 30 PRESS RELEASES:

Eighty-five years of big tree history available in one place for the first time

MIT invents human brain model with six major cell types to enable personalized disease research, drug discovery

Health and economic air quality co-benefits of stringent climate policies

How immune cells deliver their deadly cargo

How the brain becomes a better listener: How focus enhances sound processing

Processed fats found in margarines unlikely to affect heart health

Scientists discover how leukemia cells evade treatment

Sandra Shi MD, MPH, named 2025 STAT Wunderkind

Treating liver disease with microscopic nanoparticles

Chemicals might be hitching a ride on nanoplastics to enter your skin

Pregnant patients with preexisting high cholesterol may have elevated CV risk

UC stroke experts discuss current and future use of AI tools in research and treatment

The Southern Ocean’s low-salinity water locked away CO2 for decades, but...

OHSU researchers develop functional eggs from human skin cells

Most users cannot identify AI bias, even in training data

Hurricane outages: Analysis details the where, and who, of increased future power cuts

Craters on surface of melanoma cells found to serve as sites for tumor killing

Research Spotlight: Mapping overlooked challenges in stroke recovery

Geographic and temporal patterns of screening for breast, cervical, and colorectal cancer in the US

Cannabis laws and opioid use among commercially insured patients with cancer diagnoses

Research Spotlight: Surprising gene mutation in brain’s immune cells linked to increased Alzheimer’s risk

Missing molecule may explain Down syndrome

Donor diabetes and 1-year Descemet membrane endothelial keratoplasty success rate

Endothelial cell loss 1 year after successful DMEK in the diabetes endothelial keratoplasty study

Overactive Runx1 gene triggers early disc degeneration linked to aging

NYU Langone Health chair of ophthalmology, Dr. Kathryn Colby, honored with Castroviejo Medal at AAO 2025

Chemotherapy combination boosts overall survival in patients with EGFR-mutant non-small cell lung cancer

FAU’s Queen Conch Lab receives prestigious international award

Post-traumatic vasospasm: An overlooked threat after brain injury

Scientists smash record in stacking semiconductor transistors for large-area electronics

[Press-News.org] Preventing chromosomal chaos: Protein-based genome-stabilizing mechanism discovered
New study, in Nature Communications, reveals key to the 'flexible stability' that is the hallmark of good heredity