PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Israeli scientists discover why soft corals have unique pulsating motion

2013-04-23
(Press-News.org) Jerusalem, April 23, 2013 -- Scientists from the Hebrew University of Jerusalem and the Technion-Israel Institute of Technology have discovered why Heteroxenia corals pulsate. Their work, which resolves an old scientific mystery, appears in the current issue of PNAS (Proceedings of the National Academy of Sciences in the US).

One of the most fascinating and spectacular sights in the coral reef of Eilat is the perpetual motion of the tentacles of a coral called Heteroxenia (Heteroxenia fuscescens). Heteroxenia is a soft coral from the family Xeniidae, which looks like a small bunch of flowers, settled in the reef walls and on rocky areas on the bottom of the reef. Each "flower" is actually a living polyp, the basic unit which comprises a coral colony. Apparently, the motion of these polyps, resembling flowers that are elegantly spreading out and closing up their petals, is unique in the animal kingdom.

Except for the familiar swimming motion of jellyfish, no other bottom-attached aquatic animal is known to perform such motions. Pulsation is energetically costly, and hence there must be a reasonable benefit to justify this motion.

The perpetual motions of jellyfish serve them for swimming, predation and feeding. The natural explanation would be that that the Heteroxenia's spectacular motions are used for predation and feeding, however several studies indicate that these corals do not predate on other animals at all. If predation is not the reason for pulsating, there must be another explanation to justify the substantial energetic expense by the Heteroxenia.

Maya Kremien found the answers to these questions, while working on her master's research at the Interuniversity institute for Marine Sciences in Eilat under the supervision of Prof. Amatzia Genin from the Hebrew University and Prof. Uri Shavit from the Technion in a joint research funded by the National Science Foundation.

After watching several coral colonies with an underwater infrared-sensitive camera night and day, the researchers found their first surprising discovery: Heteroxenia corals cease to pulsate and take a half-hour break every single day in the afternoon hours. At this stage, the afternoon "siestas" remained unexplained.

The labs of Prof. Genin and Prof. Shavit conduct work on the interaction between biological processes of aquatic creatures and the water motions which surround them. Apparently aquatic animals affect the flow and at the same time are absolutely dependent on that flow. In order to solve the mystery of the Heteroxenia coral, the research team developed (as part of Ph.D. work by Tali Mass) an underwater measuring device called PIV (particle imaging velocimetry), which allows measurement of the flow field just around the coral very accurately. The system consists of two powerful lasers, an image capturing system and computation ability. A special set of lenses releases a sheet of light in short, powerful pulses so that the imaging system can capture pairs of snapshots of natural particles moving with the flow. The computational system then performs a mathematical analysis of the pairs of photos, producing a huge database of flow field maps, from which the flow speed, characteristics of solutes transport, and turbulent mixing intensity are calculated.

VIDEO: This video shows pulsating coral in Gulf of Eilat, Israel.
Click here for more information.

The measurements were performed at night with the support of divers who volunteered to assist the research team. It was found that if a diver lightly touched the coral, the polyps "close" and remain motionless for a few minutes, after which the coral returns to its normal pulsation activity. The researchers used this behavior in order to repeatedly measure the flow field around the Heteroxenia during pulsation and rest.

These measurements led to the research group's next discovery. Analysis of the direction of water flow indicated that the motion of the polyps effectively sweeps water up and away from the coral tissues into the ambient water. Corals need carbon-dioxide during daytime and oxygen during nighttime, as well as nutrients (such as phosphate and nitrogen) during day and night. One of the challenges for coral colonies is to render their surrounding waters rich in essential commodities by efficiently mixing the water around them.

By using the sophisticated measuring system, the researchers calculated the mixing intensity of the water as a result of the coral's pulsation. The unexpected discovery was that even though the polyps' motions are uncoordinated (i.e. each polyp starts its period of motion at a different time), the accumulated effect of the polyps' activity is a significant enhancement of the flow around the colony, particularly in the upward direction which sweeps water away from the coral, hence reducing the probability of re-filtration of the same water.

However, these findings still did not yet answer the question of why a coral would invest so much energy to move its tentacles. After receiving a permit from the Israel Nature and Parks Authority, the research team collected a few Heteroxenia colonies from the sea in order to run a series of laboratory experiments. All corals were returned back to their original location after the experiment terminated. The Hypothesis was that the pulsation motions enhance the coral's photosynthesis rate.

Corals are among the most ancient creatures surviving on our planet. One of the "secrets" of their amazing survival abilities is that they "host" photosynthetic algae in their tissues. The symbiotic algae provides the coral with essential nutrients and lives off the waste of the coral.

In a previous study of the same research team (which the results of were also published in PNAS) it was found that the motion of water around corals is essential in order to enhance the efflux of oxygen from the coral tissues. Without water motion, the oxygen concentration in the coral tissues would rise and the photosynthesis rate would drop.

The answer to the question as to why the Heteroxenia pulsates was finally revealed through the lab experiments. First, the photosynthesis rate of a pulsating Heteroxenia was measured, and it was found to be on an order of magnitude higher than that of a non-pulsating colony. Next, in order to prove that the mechanism of pulsation is intended to sweep away oxygen, the researchers artificially increased the oxygen concentration in the measurement chamber so that even when the coral managed to mix water via pulsation, it was replacing oxygen-rich water with new water, which, unfortunately for the coral , was also rich in oxygen. And indeed it was found that the photosynthesis rate was low in this case, and even when the coral was constantly pulsating, the oxygen concentration remained high and photosynthesis remained low, as if the coral was at rest (i.e. not pulsating).

The elegant motion of Heteroxenia has been fascinating the scientific society and capturing the attention of researchers for nearly 200 years (Jean-Baptiste Lamarck, 1744-1829), yet it has not been explained. Now, in the study of Kremien, Genin and Shavit, it was found that the pulsation motions augment a significant enhancement in the binding of carbon dioxide to the photosynthetic enzyme RuBisCo, also leading to a decrease in photorespiration. This explanation justifies the investment of energy in pulsation -- the benefit overcomes the cost. In fact, thanks to pulsation, the ratio between photosynthesis to respiration in Heteroxenia is the highest ever measured in stony and non-pulsating soft corals.

The findings of this study indicate that pulsation motions are a highly efficient means for sweeping away water from the pulsating body, and for an increased mixing of dissolved matter between the body and the surrounding medium. These two processes (expulsion of medium and mixing of solutes) may lead to future applications in engineering and medicine. Currently the research group is focusing on attempts to broaden the results of this study and on developing mathematical models which could serve various applicative purposes.



INFORMATION:



ELSE PRESS RELEASES FROM THIS DATE:

Flexible partnership allows lichens to occur in different habitats

2013-04-23
Lichens are symbiotic organisms consisting of a fungal partner and one or several algal partners. The association is so close that scientists until 1867 were not aware that lichens actually consist of two different partners. After the Swiss botanist Simon Schwendener discovered the dual nature of lichens, lichenologists were focusing on the fungal partner when studying lichens, since it was often believed that only few algae are involved in the symbiosis. Molecular studies have shown that it was a mistake to neglect the algal partner for a long time. The diversity of ...

'Love handles' melt away at the push of a button

2013-04-23
For a long time, scientists have dreamt of converting undesirable white fat cells into brown fat cells and thus simply have excess pounds melt away. Researchers at the University of Bonn have now gotten a step closer to this goal: They decoded a "toggle switch" in mice which can significantly stimulate fat burning. The results are now being presented in the scientifc journal "Nature Communications". Many people not only in industrialized nations struggle with excess weight - but all fat is not alike. "Love handles" in particular contain troublesome white fat cells which ...

Study finds that residential lawns efflux more carbon dioxide than corn fields

2013-04-23
More carbon dioxide is released from residential lawns than corn fields according to a new study. And much of the difference can likely be attributed to soil temperature. The data, from researchers at Elizabethtown College, suggest that urban heat islands may be working at smaller scales than previously thought. These findings provide a better understanding of the changes that occur when agricultural lands undergo development and urbanization to support growing urban populations. David Bowne, assistant professor of biology, led the study to look at the amount of carbon ...

Whether human or hyena, there's safety in numbers

2013-04-23
Humans, when alone, see threats as closer than they actually are. But mix in people from a close group, and that misperception disappears. In other words, there's safety in numbers, according to a new study by two Michigan State University scholars. Their research provides the first evidence that people's visual biases change when surrounded by members of their own group. "Having one's group or posse around actually changes the perceived seriousness of the threat," said Joseph Cesario, lead author on the study and assistant professor of psychology. "In that situation, ...

Study: Source of organic matter affects Bay water quality

2013-04-23
Each time it rains, runoff carries an earthy tea steeped from leaf litter, crop residue, soil, and other organic materials into the storm drains and streams that feed Chesapeake Bay. A new study led by researchers at William & Mary's Virginia Institute of Marine Science reveals that land use in the watersheds from which this "dissolved organic matter" originates has important implications for Bay water quality, with the organic carbon in runoff from urbanized or heavily farmed landscapes more likely to persist as it is carried downstream, thus contributing energy to fuel ...

New technology that improves your brain

2013-04-23
TAMPA, Fla. (April 23, 2013) – Improving brain function is one of the topics explored in the latest issue of Technology and Innovation – Proceedings of the National Academy of Inventors® (https://www.cognizantcommunication.com/component/content/article/636). The special issue, which also contains studies on medical technology and health care delivery, contains two articles on brain health: one on preventing and curing mental illness and one on improving the brain through training. The BRAINnet Foundation uses technology to prevent and cure mental illnesses The non-profit ...

Insights into deadly coral bleaching could help preserve reefs

2013-04-23
Coral reefs are stressed the world over and could be in mortal danger because of climate change. But why do some corals die and others not, even when exposed to the same environmental conditions? An interdisciplinary research team from Northwestern University and The Field Museum of Natural History has a surprising answer: The corals themselves play a role in their susceptibility to deadly coral bleaching due to the light-scattering properties of their skeletons. No one else has shown this before. Using optical technology designed for early cancer detection, the researchers ...

Shoulder injuries in baseball pitchers could be prevented with 3-D motion detection system

2013-04-23
MAYWOOD, Ill. -- A new 3-D motion detection system could help identify baseball pitchers who are at risk for shoulder injuries, according to a new study. The system can be used on the field, and requires only a laptop computer. Other systems that evaluate pitchers' throwing motions require cameras and other equipment and generally are confined to indoor use. Loyola University Medical Center sports medicine surgeon Pietro Tonino, MD, is a co-author of the study, published in the journal Musculoskeletal Surgery. In a well-rested pitcher, the humerus (upper arm bone) ...

The crystal's corners: New nanowire structure has potential to increase semiconductor applications

2013-04-23
There's big news in the world of tiny things. New research led by University of Cincinnati physics professors Howard Jackson and Leigh Smith could contribute to better ways of harnessing solar energy, more effective air quality sensors or even stronger security measures against biological weapons such as anthrax. And it all starts with something that's 1,000 times thinner than the typical human hair – a semiconductor nanowire. UC's Jackson, Smith, recently graduated PhD student Melodie Fickenscher and physics doctoral student Teng Shi, as well as several colleagues ...

Virus kills melanoma in animal model, spares normal cells

2013-04-23
Researchers from Yale University School of Medicine have demonstrated that vesicular stomatitis virus (VSV) is highly competent at finding, infecting, and killing human melanoma cells, both in vitro and in animal models, while having little propensity to infect non-cancerous cells. "If it works as well in humans, this could confer a substantial benefit on patients afflicted with this deadly disease," says Anthony van den Pol, a researcher on the study. The research was published online ahead of print in the Journal of Virology. Most normal cells resist virus infection ...

LAST 30 PRESS RELEASES:

Wistar scientists discover new immunosuppressive mechanism in brain cancer

ADA Forsyth ranks number 1 on the East Coast in oral health research

The American Ornithological Society (AOS) names Judit Szabo as new Ornithological Applications editor-in-chief

Catheter-directed mechanical thrombectomy system demonstrates safety and effectiveness in patients with pulmonary embolism

Novel thrombectomy system demonstrates positive safety and feasibility results in treating acute pulmonary embolism

Biomimetic transcatheter aortic heart valve offers new option for aortic stenosis patients

SMART trial reaffirms hemodynamic superiority of TAVR self-expanding valve in aortic stenosis patients with a small annulus over time and regardless of age

Metastatic prostate cancer research: PSMAfore follow-on study favors radioligand therapy over change to androgen receptor pathway inhibition

Studies highlight need for tailored treatment options for women with peripheral artery disease

Women and Black patients less likely to receive catheter-based treatment for pulmonary embolism

Pilot program improves well-being of families during advanced care planning

The key role of Galectin-3 in brain tumour development

Announcing Junevity as Tier 3 Sponsor of ARDD 2024

Climate change amplifies severity of combined wind-rain extremes over the UK and Ireland

Exeter announces new £3.4 million global funding for solutions to antifungal drug resistance

In medieval England, leprosy spread between red squirrels and people, genome evidence shows

Source of pregnancy complications from infections revealed by placenta map

Lepra in the middle ages: New insights on transmission pathways through squirrels

The Foundational Questions Institute, FQxI, appoints Pinar Emirdag to Board of Directors

Stretchable e-skin could give robots human-level touch sensitivity

Researchers collaborate with the shipping industry to cut costs, fuel consumption and greenhouse gas emissions in shipping

Towards transparent and antimicrobial surfaces for touch displays

Number of male Oxbridge students from elite schools declined significantly in the middle of the twentieth century, study shows

A cost-efficient path to a renewable energy grid for Australia

Leadership in MS Rehabilitation recognized: John DeLuca, PhD, awarded 2024 Giants of MS® Honor

High rates of hip osteoarthritis among older adults with spinal deformity

ChatGPT can be helpful for Black women’s self-education about HIV, PrEP

Research quantifies “gap” in carbon removal for first time

Study: ChatGPT displays lower concern for child development “warning signs” than physicians

Study: Childcare is unaffordable for U.S. medical residents

[Press-News.org] Israeli scientists discover why soft corals have unique pulsating motion