(Press-News.org) New research from the University of Southampton has found that working or travelling on an underground railway for a sustained period of time could have health implications.
Previously published work suggests that working in environments such as steel mills or welding plants, which are rich in airborne metals, like iron, copper and nickel, can have damaging effects on health. However, little research has been done on the effects of working in an underground railway environment – a similarly metal-rich environment – and results of studies that have been conducted are often inconclusive.
New research published in Environmental Science and Technology shows that the small dust particles in the air in an underground railway is quite different to the dust that you breathe in every day and that could have health implications.
Matt Loxham, PhD student at the University of Southampton, explains: "We studied the ultrafine dust (or particulate matter) found in an underground station in Europe. Typically, ultrafine dust is composed of inert matter that does not pose much of a risk in terms of its chemical composition. However, in the underground station we studied, the ultrafine dust was at least as rich in metals as the larger dust particles and therefore, taken together with their increased surface area to volume ratio, it is of potential significance in understanding the risks of working and travelling in the underground. These tiny dust particles have the potential to penetrate the lungs and the body more easily, posing a risk to someone's health."
While coarse dust is generally deposited in the conducting airways of the body, for example nasal passages and bronchi; and the fine dust generally can reach the bronchioles (smaller airways), it is almost exclusively the ultrafine dust which is able to reach the deepest areas of the lungs, into the alveoli, where oxygen enters the blood and waste gases leave, to be exhaled. There is evidence that this ultrafine dust may be able to evade the protective barrier lining the airways (the epithelium), and enter underlying tissue and the circulation, meaning that the toxicity of ultrafine particles may not be limited to the airways but may involve the cardiovascular system, liver, brain, and kidneys.
Mr Loxham adds: "Underground rail travel is used by great numbers of people in large cities all over the world, for example, almost 1.2 billion journeys are made per year on the London Underground. The high level of mechanical activity in underground railways, along with very high temperatures is key in the generation of this metal-rich dust, and the number of people likely to be exposed means that more studies into the effects of particulate matter in the underground railway environment are needed, as well as examining how the levels of dust and duration of exposure might translate to effects on health."
The Southampton team, which included the Geochemistry Group at the National Oceanography Centre, Southampton and the Inhalation Toxicology Group at the National Institute for Public Health and the Environment (RIVM) in Bilthoven, initially collected airborne dust from a mainline underground station underneath an airport in Europe. The metal content of the dust was analysed and a detailed elemental profile was established for each dust sample. These profiles were then compared to profiles from other dusts analysed at the same time, for example dust from wood-burning stoves and a heavily-trafficked road tunnel, showing that underground particles were very rich in metals, especially iron and copper. The shapes of individual particles were examined and gave clues as to how the particles were generated. The team then showed that the dust was capable of generating reactive molecules which are fundamental to their toxic effects, and that this was dependent on the metal content of the particles and, importantly, occurred to a greater extent as the size of the individual particles decreased. Further work is now being performed to examine the effects of underground dust on airway cells in more detail and the potential mechanisms by which cells may be able to protect themselves.
###
The study was funded through the Integrative Toxicology Training Partnership studentship provided by the Medical Research Council UK.
Microscopic dust particles found in underground railways may pose health risk
2013-04-24
ELSE PRESS RELEASES FROM THIS DATE:
Video reveals cancer cells' Achilles' heel
2013-04-24
VIDEO:
The Natural Killer white blood cell in red is drawn to the cancerous B cell which has been treated with rituximab. It latches on to the side of the cell...
Click here for more information.
Scientists from the Manchester Collaborative Centre for Inflammation Research (MCCIR) have discovered why a particular cancer drug is so effective at killing cells. Their findings could be used to aid the design of future cancer treatments.
Professor Daniel Davis and his team ...
Important fertility mechanism discovered
2013-04-24
Scientists in Mainz and Aachen have discovered a new mechanism that controls egg cell fertility and that might have future therapeutic potential. It was revealed by Professor Dr. Walter Stöcker of the Institute of Zoology at Johannes Gutenberg University Mainz (JGU) that the blood protein fetuin-B plays an important and previously unknown role in the fertilization of oocytes. Fetuin-B, first identified in the year 2000, is formed in the liver and secreted into the blood stream. During a joint research project with researchers at RWTH Aachen University headed by Professor ...
Mild blast injury causes molecular changes in brain akin to Alzheimer, Pitt team says
2013-04-24
A multicenter study led by scientists at the University of Pittsburgh School of Medicine shows that mild traumatic brain injury after blast exposure produces inflammation, oxidative stress and gene activation patterns akin to disorders of memory processing such as Alzheimer's disease. Their findings were recently reported in the online version of the Journal of Neurotrauma.
Blast-induced traumatic brain injury (TBI) has become an important issue in combat casualty care, said senior investigator Patrick Kochanek, M.D., professor and vice chair of critical care medicine ...
New LED streetlight design curbs light pollution
2013-04-24
WASHINGTON, April 24, 2013—Streetlights illuminate the night, shining upon roadways and sidewalks across the world, but these ubiquitous elements of the urban environment are notoriously inefficient and major contributors to light pollution that washes out the night sky. Recent innovations in light emitting diodes (LEDs) have improved the energy efficiency of streetlights, but, until now, their glow still wastefully radiated beyond the intended area. A team of researchers from Taiwan and Mexico has developed a new lighting system design that harnesses high-efficiency LEDs ...
Recipe for low-cost, biomass-derived catalyst for hydrogen production
2013-04-24
UPTON, NY — In a paper to be published in an upcoming issue of Energy & Environmental Science (now available online), researchers at the U.S. Department of Energy's Brookhaven National Laboratory describe details of a low-cost, stable, effective catalyst that could replace costly platinum in the production of hydrogen. The catalyst, made from renewable soybeans and abundant molybdenum metal, produces hydrogen in an environmentally friendly, cost-effective manner, potentially increasing the use of this clean energy source.
The research has already garnered widespread recognition ...
International study finds new genetic links to juvenile arthritis
2013-04-24
CINCINNATI – Researchers report in Nature Genetics they have increased the number of confirmed genes linked to juvenile idiopathic arthritis (JIA) from three to 17 – a finding that will clarify how JIA fits into the spectrum of autoimmune disorders and help identify potential treatment targets.
Published April 21, the study involves an international research team that analyzed 2,816 JIA cases recruited from more than 40 pediatric rheumatology clinics. It was the largest collaborative patient population of JIA to date, including patient DNA samples from across the United ...
Research finds targeted screening for hepatitis C is cost-effective
2013-04-24
CINCINNATI—Researchers at the University of Cincinnati have found that targeted screening for populations with a higher estimated prevalence for hepatitis C may be cost-effective.
These findings, published in the April 24, 2013, online edition of the journal Clinical Infectious Diseases, indicate that targeted screening for chronic hepatitis C virus infection is cost-effective when the prevalence of hepatitis C in a population exceeds 0.84 percent (84/10,000).
The study further demonstrates how a screening tool, which can be incorporated into an electronic health ...
Sunlit snow triggers atmospheric cleaning, ozone depletion in the Arctic
2013-04-24
National Science Foundation-funded researchers at Purdue University have discovered that sunlit snow is the major source of atmospheric bromine in the Arctic, the key to unique chemical reactions that purge pollutants and destroy ozone.
The new research also indicates that the surface snowpack above Arctic sea ice plays a previously unappreciated role in the bromine cycle and that loss of sea ice, which been occurring at an increasingly rapid pace in recent years, could have extremely disruptive effects in the balance of atmospheric chemistry in high latitudes.
The ...
UNL team's discovery yields supertough, strong nanofibers
2013-04-24
University of Nebraska-Lincoln materials engineers have developed a structural nanofiber that is both strong and tough, a discovery that could transform everything from airplanes and bridges to body armor and bicycles.
Their findings are featured on the cover of this week's April issue of the American Chemical Society's journal, ACS Nano.
"Whatever is made of composites can benefit from our nanofibers," said the team's leader, Yuris Dzenis, McBroom Professor of Mechanical and Materials Engineering and a member of UNL's Nebraska Center for Materials and Nanoscience.
"Our ...
Guelph scientists develop first vaccine to help control autism symptoms
2013-04-24
A first-ever vaccine created by University of Guelph researchers for gut bacteria common in autistic children may also help control some autism symptoms.
The groundbreaking study by Brittany Pequegnat and Guelph chemistry professor Mario Monteiro appears this month in the journal Vaccine.
They developed a carbohydrate-based vaccine against the gut bug, Clostridium bolteae.
C. bolteae is known to play a role in gastrointestinal disorders, and it often shows up in higher numbers in the GI tracts of autistic children than in those of healthy kids.
More than 90 per ...