(Press-News.org) Professor of Biochemistry Emad Tajkhorshid and colleagues have discovered that membrane transporters help not just sugars and other specific substrates cross from one side of a cellular membrane to the other—water also comes along for the ride.
There are two main ways that molecules can cross a membrane. In passive transport, molecules are able to pass through a membrane protein called a channel (which provides a wide open pathway) to get from the high concentration side to low concentration side of the membrane. This requires no energy as the molecule flows easily down its concentration gradient. In active transport, molecules are pumped by a membrane protein called an active transporter to get from the low concentration side to the high concentration side. This process requires energy, because the molecule must be pumped across the membrane against its natural concentration gradient.
In order to do their job, active transporters use the alternative access mechanism. At first, only one side of the transporter protein is open, allowing only substrate molecules on that side of the membrane to bind to the transporter. Then, a change in the transporter's shape occurs so that first the open side closes, and then the other side of the transporter protein opens, successfully moving the substrate molecule to its destination.
The surprise is that this perfect coordination works only for the main substrate of active transporters, while small molecules such as water seem to be able to sneak through while the protein is undergoing its shape change. The research conducted by the Tajkhorshid group suggests that this is likely a universal behavior for all active membrane transporters and a result of the very large structural changes they undergo.
Researchers study membrane proteins using a tool called molecular dynamics. "All the molecules in biology have to move to do their job. While you can see a lot of nice pictures of proteins showing their structure, but that's just a frozen state," Tajkhorshid said. "In order to describe the function of a biomolecule, you have to see its motion, and molecular dynamics is a nice way to do this. The method essentially solves the Newtonian equations of motion for all the atoms in the molecule we like to study."
The computer simulations involved in molecular dynamics determine the motion of the transporters using algorithms that define how the atoms of a transporter interact with each other, how they interact with solvent, and how they interact with other molecules in the system. These rules are used to calculate the total force acting on every atom at each step of the transporter's motion.
However, challenges arise when doing these computer simulations because of the sheer number of atoms and the small time steps these simulations require.
"Atoms vibrate of a period of 10 femtoseconds [one quadrillionth of a second], so if you want to have ten snapshots nicely showing how it moves, you have to take a picture every one femtosecond to describe the natural motion of the system. Because we have to take such short time steps, calculating even a few microseconds of protein motion becomes computationally very expensive. Thanks to the power provided by the national supercomputing centers we have been able to accomplish such calculations." Tajkhorshid said.
Once these molecular dynamics simulations were up and running, members of Tajkhorshid's lab noticed something that they never expected to see: the transporters were leaking, allowing small amounts of water to pass through along with the substrate.
"Initially, I was surprised, because many people, including myself, assumed that these were perfect machines going back and forth between inward facing and outward facing states," Tajkhorshid said. "For almost two years, my students told me that there was some water passing through, and I just told them to repeat their simulations using more carefully designed setups, and that something was probably wrong with their simulations!"
With a little digging, the researchers found that some other labs had experimentally shown that some transporters did, in fact, have this leaky quality.
"What we did in this work was to propose that it's not just one particular family that has this leakiness, but all of the transporters that we have been studying in the lab. We found that in all cases, every time the protein starts to undergo those large structural changes, leaks form," Tajkhorshid said.
Tajkhorshid likens this mechanism to a scenario familiar to most pet owners.
"When you open the door for someone to come in, the door has to completely open, but that provides access to small things like a dog or a cat to get out of the house. Because transporters move so much when allowing a substrate in, these leaks form, allowing water molecules in," Tajkhorshid said.
Although Tajkhorshid doesn't believe transporter leakiness plays a physiological role in the cell, this discovery adds some interesting new knowledge to the field about transporters.
"Transporters are extremely important proteins, and we would love to understand their function and how they move. If we understand that better, then we might be able to design better, more specific drugs for transporters," Tajkhorshid said.
INFORMATION:
Researchers find active transporters are universally leaky
2013-05-03
ELSE PRESS RELEASES FROM THIS DATE:
DCIS Score quantifies risk of IBE
2013-05-03
The ductal carcinoma in situ (DCIS) Score quantifies the risk of ipsilateral breast event (IBE) and invasive IBE risk, complements both traditional clinical and pathologic factors, and helps provide a new clinical tool to improve the process of selecting individualized treatment for women with DCIS who meet the criteria, according to a study published May 2 in the Journal of the National Cancer Institute.
Most women with newly diagnosed cases of DCIS are eligible for breast conservation surgery, either with radiation treatment or without. The risk of developing IBE after ...
Cell biologists say immigration reform critical to scientific education and competitiveness
2013-05-03
BETHESDA, MD, MAY 2, 2013—Progress in American scientific research and reform in American immigration law must go hand in hand, the American Society for Cell Biology (ASCB) declared today in a position paper that outlines four recommendations for modernizing U.S. immigration policy.
"Despite having the best research and educational institutions in the world, existing US immigration laws serve as a significant hurdle for retaining the world's most promising scientists and for diversifying the US biomedical workforce and bioeconomy," the ASCB warned in a preface to its ...
Ebola's secret weapon revealed
2013-05-03
Researchers have discovered the mechanism behind one of the Ebola virus' most dangerous attributes: its ability to disarm the adaptive immune system.
University of Texas Medical Branch at Galveston scientists determined that Ebola short-circuits the immune system using proteins that work together to shut down cellular signaling related to interferon. Disruption of this activity, the researchers found, allows Ebola to prevent the full development of dendritic cells that would otherwise trigger an immune response to the virus.
"Dendritic cells typically undergo a process ...
'Oil for the joints' offers hope for osteoarthritis sufferers
2013-05-03
A team of researchers led by a Boston University Biomedical Engineer has developed a new joint lubricant that could bring longer lasting relief to millions of osteoarthritis sufferers. The new synthetic polymer supplements synovial fluid, the natural lubricant in joints, and works better than comparable treatments currently available.
According to Boston University Professor of Biomedical Engineering Mark W. Grinstaff, the best fluid supplement now available offers temporary symptom relief but provides inadequate lubrication to prevent further degradation of the cartilage ...
Study looks at muscle adaptation of transition to minimalist running
2013-05-03
For tens of thousands of years, humans ran on bare feet. Then we developed an assortment of specialized shoes, including – particularly since the 1960s – a seemingly limitless variety of running shoes. Despite the perceived advantages of foot protection, some runners in recent years have returned to barefoot running, believing it is a more natural way to run and therefore less injurious to the feet and legs.
As a result, several shoe manufacturers have produced specialized "minimalist" shoes to accommodate this, such as the Vibram FiveFingers shoes. Such shoes allow a ...
NASA measures rainfall as Cyclone Zane approaches Queensland, Australia
2013-05-03
VIDEO:
This video is a TRMM flyby of Tropical Cyclone Zane in May 2013.
Click here for more information.
NASA's Tropical Rainfall Measuring Mission or TRMM satellite passed over Cyclone Zane as it was approaching Queensland Australia's Cape York Peninsula and measured rainfall rates within the storm. TRMM data showed a disorganized storm with the strongest rain falling northwest of the center.
Cyclone Zane, as of 12:00 UTC (10:00 p.m. Australian Eastern Standard Time or ...
U of M researchers discover link between heart, blood, and skeletal muscle
2013-05-03
MINNEAPOLIS/ST. PAUL (MAY 2, 2013) – New research out of the Lillehei Heart Institute at the University of Minnesota shows that by turning on just a single gene, Mesp1, different cell types including the heart, blood and muscle can be created from stem cells.
The study was published today in the journal Cell Stem Cell.
"Previous research indicated that this gene was the "master regulator" for development of the heart, and that its activity prevented the differentiation of other cell types," said Michael Kyba, Ph.D., associate professor in the University of Minnesota ...
GSA's top geoscience journal posts 9 new articles
2013-05-03
Boulder, Colo., USA – New Geology papers cover ancient iron oceans; the Antarctic and global climate/carbon-cycle feedbacks; evidence of catastrophic spillover from kilometer-deep bodies of water on Mars; the role of volcanic emissions in ozone depletion; "fingerprinting" San Andreas fault sandstone; a climax in Earth's mountain-building cycle; the last place on land undergoing continental breakup; garnet as a proxy for subduction zone dehydration; and evidence of migrating mammals at the Venta del Moro fossil site, Spain.
Highlights are provided below. Geology articles ...
Scientists uncover relationship between lavas erupting on sea floor and deep-carbon cycle
2013-05-03
Scientists from the Smithsonian and the University of Rhode Island have found unsuspected linkages between the oxidation state of iron in volcanic rocks and variations in the chemistry of the deep Earth. Not only do the trends run counter to predictions from recent decades of study, they belie a role for carbon circulating in the deep Earth. The team's research was published May 2 in Science Express.
Elizabeth Cottrell, lead author and research geologist at the Smithsonian's National Museum of Natural History, and Katherine Kelley at the University of Rhode Island's Graduate ...
CWRU School of Medicine researchers discover new target for personalized cancer therapy
2013-05-03
A common cancer pathway causing tumor growth is now being targeted by a number of new cancer drugs and shows promising results. A team of researchers at Case Western Reserve University School of Medicine have developed a novel method to disrupt this growth signaling pathway, with findings that suggest a new treatment for breast, colon, melanoma and other cancers.
The research team has pinpointed the cancer abnormality to a mutation in a gene called PIK3CA that results in a mutant protein, which may be an early cancer switch. By disrupting the mutated signaling pathway, ...