(Press-News.org)
VIDEO:
The tiny robot flaps its wings 120 times per second using piezoelectric actuators -- strips of ceramic that expand and contract when an electric field is applied. Thin hinges of...
Click here for more information.
Cambridge, Mass. - May 2, 2013 - In the very early hours of the morning, in a Harvard robotics laboratory last summer, an insect took flight. Half the size of a paperclip, weighing less than a tenth of a gram, it leapt a few inches, hovered for a moment on fragile, flapping wings, and then sped along a preset route through the air.
Like a proud parent watching a child take its first steps, graduate student Pakpong Chirarattananon immediately captured a video of the fledgling and emailed it to his adviser and colleagues at 3 a.m.—subject line, "Flight of the RoboBee."
"I was so excited, I couldn't sleep," recalls Chirarattananon, co-lead author of a paper published this week in Science.
The demonstration of the first controlled flight of an insect-sized robot is the culmination of more than a decade's work, led by researchers at the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard.
"This is what I have been trying to do for literally the last 12 years," says Robert J. Wood, Charles River Professor of Engineering and Applied Sciences at SEAS, Wyss Core Faculty Member, and principal investigator of the National Science Foundation-supported RoboBee project. "It's really only because of this lab's recent breakthroughs in manufacturing, materials, and design that we have even been able to try this. And it just worked, spectacularly well."
Inspired by the biology of a fly, with submillimeter-scale anatomy and two wafer-thin wings that flap almost invisibly, 120 times per second, the tiny device not only represents the absolute cutting edge of micromanufacturing and control systems; it is an aspiration that has impelled innovation in these fields by dozens of researchers across Harvard for years.
"We had to develop solutions from scratch, for everything," explains Wood. "We would get one component working, but when we moved onto the next, five new problems would arise. It was a moving target."
Flight muscles, for instance, don't come prepackaged for robots the size of a fingertip.
"Large robots can run on electromagnetic motors, but at this small scale you have to come up with an alternative, and there wasn't one," says co-lead author Kevin Y. Ma, a graduate student at SEAS.
The tiny robot flaps its wings with piezoelectric actuators—strips of ceramic that expand and contract when an electric field is applied. Thin hinges of plastic embedded within the carbon fiber body frame serve as joints, and a delicately balanced control system commands the rotational motions in the flapping-wing robot, with each wing controlled independently in real-time.
At tiny scales, small changes in airflow can have an outsized effect on flight dynamics, and the control system has to react that much faster to remain stable.
The robotic insects also take advantage of an ingenious pop-up manufacturing technique that was developed by Wood's team in 2011. Sheets of various laser-cut materials are layered and sandwiched together into a thin, flat plate that folds up like a child's pop-up book into the complete electromechanical structure.
The quick, step-by-step process replaces what used to be a painstaking manual art and allows Wood's team to use more robust materials in new combinations, while improving the overall precision of each device.
"We can now very rapidly build reliable prototypes, which allows us to be more aggressive in how we test them," says Ma, adding that the team has gone through 20 prototypes in just the past six months.
Applications of the RoboBee project could include distributed environmental monitoring, search-and-rescue operations, or assistance with crop pollination, but the materials, fabrication techniques, and components that emerge along the way might prove to be even more significant. For example, the pop-up manufacturing process could enable a new class of complex medical devices. Harvard's Office of Technology Development, in collaboration with Harvard SEAS and the Wyss Institute, is already in the process of commercializing some of the underlying technologies.
"Harnessing biology to solve real-world problems is what the Wyss Institute is all about," says Wyss Founding Director Don Ingber. "This work is a beautiful example of how bringing together scientists and engineers from multiple disciplines to carry out research inspired by nature and focused on translation can lead to major technical breakthroughs."
And the project continues.
"Now that we've got this unique platform, there are dozens of tests that we're starting to do, including more aggressive control maneuvers and landing," says Wood.
After that, the next steps will involve integrating the parallel work of many different research teams who are working on the brain, the colony coordination behavior, the power source, and so on, until the robotic insects are fully autonomous and wireless.
The prototypes are still tethered by a very thin power cable because there are no off-the-shelf solutions for energy storage that are small enough to be mounted on the robot's body. High energy-density fuel cells must be developed before the RoboBees will be able to fly with much independence.
Control, too, is still wired in from a separate computer, though a team led by SEAS faculty Gu-Yeon Wei and David Brooks is working on a computationally efficient brain that can be mounted on the robot's frame.
"Flies perform some of the most amazing aerobatics in nature using only tiny brains," notes coauthor Sawyer B. Fuller, a postdoctoral researcher on Wood's team who essentially studies how fruit flies cope with windy days. "Their capabilities exceed what we can do with our robot, so we would like to understand their biology better and apply it to our own work."
The milestone of this first controlled flight represents a validation of the power of ambitious dreams—especially for Wood, who was in graduate school when he set this goal.
"This project provides a common motivation for scientists and engineers across the university to build smaller batteries, to design more efficient control systems, and to create stronger, more lightweight materials," says Wood. "You might not expect all of these people to work together: vision experts, biologists, materials scientists, electrical engineers. What do they have in common? Well, they all enjoy solving really hard problems."
"I want to create something the world has never seen before," adds Ma. "It's about the excitement of pushing the limits of what we think we can do, the limits of human ingenuity."
INFORMATION:
This research was supported by the National Science Foundation and the Wyss Institute for Biologically Inspired Engineering at Harvard.
HARVARD SCHOOL OF ENGINEERING AND APPLIED SCIENCES
The Harvard School of Engineering and Applied Sciences (SEAS) serves as the connector and integrator of Harvard's teaching and research efforts in engineering, applied sciences, and technology. Through collaboration with researchers from all parts of Harvard, other universities, and corporate and foundational partners, we bring discovery and innovation directly to bear on improving human life and society. For more information, visit: http://seas.harvard.edu.
WYSS INSTITUTE FOR BIOLOGICALLY INSPIRED ENGINEERING AT HARVARD
The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard's Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University and Tufts University, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups. The Wyss Institute recently won the prestigious World Technology Network award for innovation in biotechnology.
Robotic insects make first controlled flight
In culmination of a decade's work, RoboBees achieve vertical takeoff, hovering, and steering
2013-05-03
ELSE PRESS RELEASES FROM THIS DATE:
Dual-color lasers could lead to cheap and efficient LED lighting
2013-05-03
A new semiconductor device capable of emitting two distinct colours has been created by a group of researchers in the US, potentially opening up the possibility of using light emitting diodes (LEDs) universally for cheap and efficient lighting.
The proof-of-concept device, which has been presented today, 3 May, in IOP Publishing's journal Semiconductor Science and Technology, takes advantage of the latest nano-scale materials and processes to emit green and red light separated by a wavelength of 97 nanometres—a significantly larger bandwidth than a traditional semiconductor.
Furthermore, ...
Cyberthreats must require governments and businesses to be 'cyberrisk intelligent'
2013-05-03
HOUSTON – (May 2, 2013) – In an age where cybersecurity is of foremost interest for governments and businesses, public and private organizations must deploy risk-intelligence governance to secure their digital communications and resources from eavesdropping, theft or attack, according to a new paper from Rice University's Baker Institute for Public Policy.
The paper, "Risk-Intelligent Governance in the Age of Cyberthreats," was authored by Christopher Bronk, a fellow in information technology policy at the Baker Institute. Against the backdrop of technology experts and ...
'Dark genome' is involved in Rett Syndrome
2013-05-03
Researchers at the Epigenetics and Cancer Biology Program at IDIBELL led by Manel Esteller, ICREA researcher and professor of genetics at the University of Barcelona, have described alterations in noncoding long chain RNA sequences (lncRNA) in Rett syndrome.
These molecules act as supervisor agents responsible of 'switch on' or 'switch off' other genes in our genome that regulate the activity of neurons. The work has been published in the last issue of the journal RNA Biology.
Dark genome
Only 5% of our genetic material are genes that encode proteins. The remaining ...
Increased risk of heart attack and death with progressive coronary artery calcium buildup
2013-05-03
LOS ANGELES (May 2, 2013) – Patients with increasing accumulations of coronary artery calcium were more than six times more likely to suffer from a heart attack or die from heart disease than patients who didn't have increasing accumulations, according to a recent study published in the Journal of the American College of Cardiology.
The study, conducted at Los Angeles Biomedical Research Institute (LA BioMed) and five other sites, suggests more frequent monitoring of patients with coronary artery calcium accumulations could help determine the risk of heart attacks and ...
Heart cells change stem cell behavior
2013-05-03
HOUSTON – (May 2, 2013) – Stem cells drawn from amniotic fluid show promise for tissue engineering, but it's important to know what they can and cannot do. A new study by researchers at Rice University and Texas Children's Hospital has shown that these stem cells can communicate with mature heart cells and form electrical couplings with each other similar to those found in heart tissue. But these electrical connections alone do not prompt amniotic cells to become cardiac cells.
The study led by bioengineer Jeff Jacot, who has a joint appointment at Rice and Texas Children's, ...
Researchers find that some 'green' hot water systems fail to deliver on promises
2013-05-03
Two researchers affiliated with the Virginia Tech College of Engineering have published a paper which reports that hot water recirculating systems touted as "green," actually use both more energy and water than their standard counterparts.
Marc Edwards, the Charles P. Lunsford Professor of Civil and Environmental Engineering in the Virginia Tech College of Engineering, originated the efficiency study of the systems as part of an undergraduate design class six years ago. After a thorough analysis, the class concluded the claims as false, and that it "was thermodynamically ...
Dieting youth show greater brain reward activity in response to food
2013-05-03
The story is a familiar one: most people are able to lose weight while dieting but once the diet is over, the weight comes back. Many of us can personally attest that caloric deprivation weight loss diets typically do not produce lasting weight loss. Oregon Research Institute (ORI) senior scientist Eric Stice, Ph.D., and colleagues provide results in a recent issue of NeuroImage that further our understanding of how and why most weight loss diets fail and provide a more comprehensive description of the impact of caloric restriction.
Results suggest that restricting food ...
Researchers plot locations where AEDs could save more lives
2013-05-03
TORONTO, May 2, 2013—Prompt use of an automated external defibrillator, or AED, can greatly increase the survival rates of people who suffer a cardiac arrest.
Yet a new study has found that publicly registered AEDs in Toronto are not in the best positions to help victims of cardiac arrest. In fact, less than one in four of all cardiac arrests had an AED close by (within 100 metres is the required distance). The average distance to the nearest AED was closer to 300 meters.
Current guidelines suggest areas associated with the highest risk of cardiac arrest should be targeted ...
Researchers find active transporters are universally leaky
2013-05-03
Professor of Biochemistry Emad Tajkhorshid and colleagues have discovered that membrane transporters help not just sugars and other specific substrates cross from one side of a cellular membrane to the other—water also comes along for the ride.
There are two main ways that molecules can cross a membrane. In passive transport, molecules are able to pass through a membrane protein called a channel (which provides a wide open pathway) to get from the high concentration side to low concentration side of the membrane. This requires no energy as the molecule flows easily down ...
DCIS Score quantifies risk of IBE
2013-05-03
The ductal carcinoma in situ (DCIS) Score quantifies the risk of ipsilateral breast event (IBE) and invasive IBE risk, complements both traditional clinical and pathologic factors, and helps provide a new clinical tool to improve the process of selecting individualized treatment for women with DCIS who meet the criteria, according to a study published May 2 in the Journal of the National Cancer Institute.
Most women with newly diagnosed cases of DCIS are eligible for breast conservation surgery, either with radiation treatment or without. The risk of developing IBE after ...
LAST 30 PRESS RELEASES:
New perspective highlights urgent need for US physician strike regulations
An eye-opening year of extreme weather and climate
Scientists engineer substrates hostile to bacteria but friendly to cells
New tablet shows promise for the control and elimination of intestinal worms
Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston
Depression – discovering faster which treatment will work best for which individual
Breakthrough study reveals unexpected cause of winter ozone pollution
nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory
Generative AI: Uncovering its environmental and social costs
Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure
Dangerous bacterial biofilms have a natural enemy
Food study launched examining bone health of women 60 years and older
CDC awards $1.25M to engineers retooling mine production and safety
Using AI to uncover hospital patients’ long COVID care needs
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
[Press-News.org] Robotic insects make first controlled flightIn culmination of a decade's work, RoboBees achieve vertical takeoff, hovering, and steering