PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Gene offers clues to new treatments for a harmful blood clotting disorder

2013-05-08
(Press-News.org) A gene associated with both protection against bacterial infection and excessive blood clotting could offer new insights into treatment strategies for deep-vein thrombosis -- the formation of a harmful clot in a deep vein. The gene produces an enzyme that, if inhibited via a specific drug therapy, could offer hope to patients prone to deep-vein clots, such as those that sometimes form in the legs during lengthy airplane flights or during recuperation after major surgery. The research, which was led by Yanming Wang, a Penn State University associate professor of biochemistry and molecular biology, and Denisa Wagner, senior author with decades of research on thrombosis at the Boston Children's Hospital and the Harvard University Medical School, will be published in the Online Early Edition of the journal Proceedings of the National Academy of Sciences during the week ending 10 May 2013.

The team's new findings are an extension of previous research by Wang and other scientists. In earlier studies, Wang and his colleagues had revealed that a gene in mice called Pad4 (peptidylarginine deiminase 4) produces an enzyme that plays an important role in protecting the body from infection. The researchers discovered that cells with a functioning PAD4 enzyme are able to build around themselves a protective, bacteria-killing web that is dubbed a NET (neutrophil extracellular trap).

Now, in their new research, team members have studied the PAD4 enzyme's role in clotting. Wang explained that, as a part of its NET-producing duties, PAD4 regulates the formation of chromatin -- the condensed form of DNA that the cell remodels to form chromosomes. "PAD4 decondenses chromatin by loosening up the interaction between DNA and special proteins called histones. The resulting chromatin threads then combine with protein fibers, blood platelets, and other materials to become, not only the bacteria-killing NET, but also the fluffy, scattered ball that comprises a blood clot." Wang added that, in some individuals, blood clots tend to form within deep veins. These clots can then travel to the heart, causing cardiac arrest, or to the lungs, causing breathing problems.

In one of their experiments, team members compared mice with a normally functioning Pad4 gene to mice with a defective gene. They found that, when veins were constricted, genetically normal mice -- those able to produce the PAD4 enzyme -- formed clots as expected. However, genetically mutated mice -- those unable to produce the enzyme -- did not form clots normally. In fact, the scientists noted a two-fold difference in clot formation between genetically normal and genetically abnormal mice at six hours after the procedure. After 48 hours, the difference had reached 10-fold. "We noted some clotting activity in these genetically abnormal mice, but the clots were not as bulky and were not maintained over time," Wang said. "Clearly, the PAD4 enzyme plays a critical role in the formation of a blood clot, as well as in the formation of a bacteria-fighting NET."

In another experiment, the research team transferred infection-combatting white blood cells -- called neutrophils -- from normal mice to genetically mutated mice. First author Kim Martinod, a graduate student in the Immunology Graduate Program at the Harvard University Medical School, found that, in response to vein constriction, these "rescued" mice now could function normally, forming clots as efficiently as mice with a functioning Pad4 gene, demonstrating that the Pad4 gene did produce a functioning PAD4 enzyme in these white blood cells to regulate blood clotting.

"PAD4, which is also called PADI4 in humans, is a necessary enzyme involved in multiple disorders," Wang explained. "On the one hand, it plays an integral part in the body's defense system, as we showed in earlier work: It is necessary in the production of the protective, bacteria-killing NET. On the other hand, our earlier work also showed that this enzyme acts to silence tumor-suppressor genes. Now, in our new research, we are starting to see that its overactivity also may be part of the reason that some individuals suffer from deep-vein clotting." Wang added that patients prone to deep-vein thrombosis might benefit from drugs that target the PAD4 enzyme. "In future research, specific drug therapies could be developed and tested with the goal of targeting this enzyme," Wang said. "If we could find a way to dial back the enzyme's clot-forming effects, we might be able to offer new hope to patients suffering from clotting disorders and deep-vein thrombosis."



INFORMATION:

In addition to Wang, Wagner, and Martinod, other scientists who contributed to this research include Jing Hu from Penn State; Melanie Demers, Tobias A. Fuchs, Siu Ling Wong, and Alexander Brill from the Harvard University Medical School and Boston Children's Hospital; and Maureen Gallant from Boston Children's Hospital.

The research was funded by the National Heart, Lung, and Blood Institute of the National Institutes of Health and the National Cancer Institute.

[ Katrina Voss ]

CONTACTS

Yanming Wang: 814-865-3775, yuw12@psu.edu

Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

IMAGE

A high-resolution image associated with this research is online at http://www.science.psu.edu/news-and-events/2013-news/Wang5-2013.

CAPTION

Shown in blue is chromatin -- the condensed form of DNA that the cell remodels to form chromosomes. The PAD4 enzyme -- histones modified by PAD4 shown in fuchsia -- decondenses chromatin by loosening up the interaction between DNA and special proteins called histones. This process helps to form both a bacteria-killing NET -- which is comprised of infection-combatting white blood cells called neutrophils -- and the fluffy, scattered ball that comprises a blood clot.

CREDIT

Wang lab, Penn State University

CITATION

Wang, Y., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200806072

GRANT NUMBERS

R01 HL095091, R01 HL041002, and R01 CA136856.



ELSE PRESS RELEASES FROM THIS DATE:

Human brain cells developed in lab, grow in mice

2013-05-08
A key type of human brain cell developed in the laboratory grows seamlessly when transplanted into the brains of mice, UC San Francisco researchers have discovered, raising hope that these cells might one day be used to treat people with Parkinson's disease, epilepsy, and possibly even Alzheimer's disease, as well as and complications of spinal cord injury such as chronic pain and spasticity. "We think this one type of cell may be useful in treating several types of neurodevelopmental and neurodegenerative disorders in a targeted way," said Arnold Kriegstein, MD, PhD, ...

Geneticists find causes for severe childhood epilepsies

2013-05-08
Researchers at the University of Arizona have successfully determined the genetic mutations causing severe epilepsies in seven out of 10 children for whom the cause of the disorder could not be determined clinically or by conventional genetic testing. Instead of sequencing each gene one at a time, the team used a technique called whole-exome sequencing: Rather than combing through all of the roughly 3 billion base pairs of an individual's entire genome, whole-exome-sequencing deciphers only actual genes, and nearly all of them simultaneously. "My initial hope was that ...

Measuring hidden HIV

2013-05-08
Scientists have long believed that measuring the amount of HIV in a person's blood is an indicator of whether the virus is actively reproducing. A University of Delaware-led research team reports new evidence that hidden virus replication may be occurring within the body's tissue, despite undetectable virus levels in the blood. The findings were reported in the Journal of the Royal Society Interface on May 8 in a paper titled "Modelling HIV-1 2-LTR dynamics following raltegravir intensification." The discovery came after the paper's lead author, Ryan Zurakowski, ...

Bacteria adapt and evade nanosilver's sting -- new study

2013-05-08
Sydney, Australia -- Researchers from the University of New South Wales have cautioned that more work is needed to understand how micro-organisms respond to the disinfecting properties of silver nano-particles, increasingly used in medical and environmental applications. Although nanosilver has effective antimicrobial properties against certain pathogens, overexposure to silver nano-particles can cause other potentially harmful organisms to rapidly adapt and flourish, a UNSW study reveals. This result, published in the journal Small, could have wide-reaching implications ...

Differences between 'marathon mice' and 'couch potato mice' reveal key to muscle fitness

2013-05-08
ORLANDO, Fla., May 8, 2013 – Researchers discovered that small pieces of genetic material called microRNAs link the two defining characteristics of fit muscles: the ability to burn sugar and fat and the ability to switch between slow- and fast-twitch muscle fibers. The team used two complementary mouse models—the "marathon mouse" and the "couch potato mouse"—to make this discovery. But what's more, they also found that active people have higher levels of one of these microRNAs than sedentary people. These findings, published May 8 in The Journal of Clinical Investigation, ...

More African-Americans have kidney transplants, but few are from live donors

2013-05-08
SAN DIEGO – While the percentage of kidney transplants involving live donors has remained stable for other minority populations, African Americans have seen a decline in live donors even as more of them receive kidney transplants, according to a study by Henry Ford Hospital in Detroit. Those findings will be presented May 8 at the annual meeting of the American Urological Association in San Diego. "African American race has been associated with disparities in care at every step of the kidney transplant process," says Jesse D. Sammon, D.O., a researcher at Henry Ford's ...

Thoracic endografts used successfully to remove tumors invading the aorta

2013-05-08
Minneapolis, MN, May 8, 2013 – Tumors have the potential to grow locally and invade neighboring organs. Some chest tumors may invade one of the great vessels of the body, the aorta. Surgical removal of these tumors is very challenging and necessitates the support of a heart-lung machine. Therefore there is an increased risk of complication and death. In a small series of patients, placing a stent within the aorta facilitated the subsequent removal of tumor and eliminated the need for heart-lung bypass. A report of these results is presented by Stéphane Collaud, MD, MSc, ...

JCI early table of contents for May 8, 2013

2013-05-08
Gene replacement in pigs ameliorates cystic fibrosis-associated intestinal obstruction Cystic fibrosis (CF) is caused by mutations in CFTR and is characterized by dysfunction of the lungs, liver, pancreas, and intestines. Approximately 15% of babies with CF are born with an obstruction of the small intestine known as meconium ileus, frequently the first sign of CF. Unlike in humans, meconium ileus occurs in 100% of newborn CF pigs. In this issue of the Journal of Clinical Investigation, Michael Welsh and colleagues at the University of Iowa demonstrate that transgenic ...

Gene replacement in pigs ameliorates cystic fibrosis-associated intestinal obstruction

2013-05-08
Cystic fibrosis (CF) is caused by mutations in CFTR and is characterized by dysfunction of the lungs, liver, pancreas, and intestines. Approximately 15% of babies with CF are born with an obstruction of the small intestine known as meconium ileus, frequently the first sign of CF. Unlike in humans, meconium ileus occurs in 100% of newborn CF pigs. In this issue of the Journal of Clinical Investigation, Michael Welsh and colleagues at the University of Iowa demonstrate that transgenic expression of normal CFTR in the intestine of CF pigs alleviated meconium ileus. Over time, ...

Alzheimer's disease is associated with removal of the synaptic protein ADAM10

2013-05-08
Alzheimer's disease is characterized by the accumulation of neurotoxic β-amyloid peptide (A-beta). ADAM10, a protein that resides in the neural synapses, has previously been shown to prevent the formation of A-beta. In this issue of the Journal of Clinical Investigation, Monica Di Luca and colleagues at the University of Milan in Milan, Italy, report that ADAM10 is removed from synapses through association with the protein AP2. Strikingly, the association between ADAM10 and AP2 was increased in human brain homogenates from Alzheimer's disease (AD) patients compared ...

LAST 30 PRESS RELEASES:

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions

Industrial snow: Factories trigger local snowfall by freezing clouds

Backyard birds learn from their new neighbors when moving house

New study in Science finds that just four global policies could eliminate more than 90% of plastic waste and 30% of linked carbon emissions by 2050

Breakthrough in capturing 'hot' CO2 from industrial exhaust

New discovery enables gene therapy for muscular dystrophies, other disorders

Anti-anxiety and hallucination-like effects of psychedelics mediated by distinct neural circuits

[Press-News.org] Gene offers clues to new treatments for a harmful blood clotting disorder