(Press-News.org) PROVIDENCE, R.I. [Brown University] — Doctors often diagnose tuberous sclerosis complex (TSC) based on the abnormal growths the genetic disease causes in organs around the body. Those overt anatomical structures, however, belie the microscopic and mysterious neurological differences behind the disease's troublesome behavioral symptoms: autism, intellectual disabilities, and seizures. In a new study in mice, Brown University researchers highlight a role for a brain region called the thalamus and show that the timing of gene mutation during thalamus development makes a huge difference in the severity of the disease.
TSC can arise in humans and mice alike when both alleles (the one from mom and the one from dad) of the TSC1 gene are deleted. One bad gene is often inherited and the other accumulates a mutation some time during embryonic development. This happens to one in 6,000 people.
"We don't know when during development the mutations are occurring in the patients," said Elizabeth Normand, a Brown neuroscience graduate student and lead author of the paper in the journal Neuron. "That's why we chose to look at the timing. It can give us some insight into the role of genes during embryonic development."
Normand and adviser Mark Zervas, assistant professor of biology, not only wanted to assess the timing but also to probe the role the thalamus might have in contributing to the neurological symptoms of the disease. To do both, their team genetically engineered a clever mouse model in which they could, with a dose of the drug tamoxifen, delete both alleles exclusively in thalamus neurons at the developmental stage of their choosing.
Their interest in the thalamus comes from its role in forging strong but intricate links to the cortex, which is where most other TSC researchers have focused. As for timing, they tested the effect of controlling allele deletions on day 12 of gestation in some mice and day 18 (just before birth) in others. Still other mice were left healthy as experimental controls.
Significant symptoms
Overall, the researchers found they could indeed generate TSC-like behavioral symptoms in the mice, such as seizures, by deleting TSC1 alleles in developing cells of the thalamus. They also found that the timing of the deletion mattered tremendously to the extent of the disease in the brain, the degree of abnormality, and the severity of TSC-like symptoms.
The mice whose alleles were deleted on embryonic day 12 fared much worse behaviorally than the mice whose alleles were deleted on embryonic day 18.
At two months of age, the mice with the embryonic day 12 deletion exhibited excessive self-grooming to the point where they experienced lesions. Among those mice, 10 of 11 experienced seizures at an average rate of more than three per hour.
The mice with the embryonic day 18 deletion, on the other hand, fared better without any over-grooming. By eight months of age, however, four of 17 of the mice did exhibit rare seizures.
These behavioral differences traced to differences in the the way the mice's brains became wired. A comparison of brain tissue from adult mice — some of which had the early TSC1 deletions and some of which didn't — revealed differences in the connections between the thalamus and the cortex and in the electrical and physical properties of thalamus cells.
"We're building off the core idea of the thalamus playing an important role in brain function and showing that if you disrupt the way that the thalamic neurons develop that you can get some of these behavioral consequences such as overgrooming or seizures," said Zervas, who is affiliated with the Brown Institute for Brain Science.
The extent of mutant neurons was much more severe in the mice with the embryonic day 12 versus day 18 mutations. In embryonic day 12 deleted mice, for example, the deletion disrupted the growth-regulating "mTOR" pathway in 70 percent of neurons versus only 29 percent of neurons in the embryonic day 18 deleted mice. The disruptions occurred in more areas of the thalamus in embryonic day 12 than in day 18 mice as well. The overactivity of mTOR in TSC is what produces the unusual growths around the body, though these new findings indicate additional roles for the mTOR pathway in brain development and function, Zervas said.
In future work, the team plans to study the effects of deleting the TSC1 allele at other days during development as well as to understand whether there is a threshold of mutant neurons with mTOR disruption at which TSC-like symptoms begin to emerge.
INFORMATION:
In addition to Normand and Zervas, other authors on the paper are Shane Crandall, Catherine Thorne, Emily Murphy, Bettina Voelcker, Catherine Browning, Jason T. Machan, Christopher Moore, and Barry Connors.
Major support for the paper came from the Department of Defense Congressionally-Directed Medical Research Program (award TS100067 and TS110083). Additional support came from the Brown Institute for Brain Science.
Advance in tuberous sclerosis brain science
May is Tuberous Sclerosis Complex awareness month
2013-05-09
ELSE PRESS RELEASES FROM THIS DATE:
Dad's genome more ready at fertilization than mom's is -- but hers catches up
2013-05-09
SALT LAKE CITY—Researchers from Huntsman Cancer Institute (HCI) at the University of Utah have discovered that while the genes provided by the father arrive at fertilization pre-programmed to the state needed by the embryo, the genes provided by the mother are in a different state and must be reprogrammed to match. The findings have important implications for both developmental biology and cancer biology.
In the earliest stages, embryo cells have the potential to develop into any type of cell, a state called totipotency. Later, this potency becomes restricted through ...
Gene identified, responsible for a spectrum of disorders affecting the bones and connective tissue
2013-05-09
Researchers from the RIKEN Center for Integrative Medical Sciences have identified a gene that when mutated is responsible for a spectrum of disorders affecting the bones and connective tissue. This finding opens new avenues for research into a diagnosis and treatment for these until now incurable diseases.
The study is published today in the American Journal of Human Genetics.
Spondyloepimetaphyseal dysplasia with joint laxity, type I or SEMD-JL1 is a disorder of the skeleton resulting in short stature and spinal problems starting from birth, and worsening with age. ...
Exit discovered in cellular garbage truck
2013-05-09
At the University of Geneva (UNIGE), the team led by Professor Jean Gruenberg has long been interested in the movement of lysosomes, the sub-compartments of cells to where endocytic vesicles deliver their waste content and the molecules destined to be destroyed. Within this context, researcher Christin Bissig, along with her international colleagues, carried out a detailed study of the route taken by Alix which is lodged inside the endosomal membrane. This tailing has highlighted how protein contributes to avoiding cellular digestion, like a door opening into the endosomal ...
Operating without interrupting warfarin reduces risk of bleeding after cardiac device surgery
2013-05-09
DENVER, May 9, 2013 – A new Canadian study shows that operating without interrupting warfarin treatment at the time of cardiac device surgery is safe and markedly reduces the incidence of clinically significant hematomas compared to the current standard of care. The new findings were released today at Heart Rhythm 2013, the Heart Rhythm Society's 34th Annual Scientific Sessions, and will be published online today in The New England Journal of Medicine (NEJM).
At least a quarter of patients that require pacemaker or implantable defibrillator surgery are taking warfarin ...
Scripps Research Institute scientists find key to gene-silencing activity
2013-05-09
LA JOLLA, CA – May 9, 2013 – A team led by scientists at The Scripps Research Institute (TSRI) has found how to boost or inhibit a gene-silencing mechanism that normally serves as a major controller of cells' activities. The discovery could lead to a powerful new class of drugs against viral infections, cancers and other diseases.
"Learning to control natural gene silencing processes will allow an entirely new approach to treating human disease," said Ian J. MacRae, assistant professor in TSRI's Department of Integrative Structural and Computational Biology and principal ...
Studies generate comprehensive list of genes required by innate system to defend sex cells
2013-05-09
Cold Spring Harbor, NY – Two teams of investigators led by Professor Gregory Hannon of Cold Spring Harbor Laboratory (CSHL) today publish studies revealing many previously unknown components of an innate system that defends sex cells – the carriers of inheritance across generations – from the ravages of transposable genetic elements.
When activated, these troublesome segments of DNA, also called jumping genes or transposons, can copy and insert themselves at random spots across the chromosomes. In sperm and egg cells the proliferation of transposons can be particularly ...
Scientists show how nerve wiring self-destructs
2013-05-09
Many medical issues affect nerves, from injuries in car accidents and side effects of chemotherapy to glaucoma and multiple sclerosis. The common theme in these scenarios is destruction of nerve axons, the long wires that transmit signals to other parts of the body, allowing movement, sight and sense of touch, among other vital functions.
Now, researchers at Washington University School of Medicine in St. Louis have found a way the body can remove injured axons, identifying a potential target for new drugs that could prevent the inappropriate loss of axons and maintain ...
No holes in Swiss online networking theory
2013-05-09
Often, it's not what you know, but who you know when it comes to business and research success and that still applies even in the age of online social networking, according to results to be published in the International Journal of Organisational Design and Engineering.
Peter Gloor, Pierre Dorsaz, Hauke Fuehres and Manfred Vogel of the MIT Center for Collective Intelligence, in Cambridge, Massachusetts have compared the success of startup entrepreneurs and innovators with their activity on the social networking sites LinkedIn and Facebook as well as email networks including ...
Toddlers from socially-deprived homes most at risk of scalds, study finds
2013-05-09
Toddlers living in socially-deprived areas are at the greatest risk of suffering a scald in the home, researchers at The University of Nottingham have found.
The study, published in the journal Burns, showed that boys aged between one and two years old and those with multiple siblings were statistically more likely to suffer a hot water-related injury, while children born to mothers aged 40 years and over were at less risk than those with teenage mums.
The results could help GPs and Health Visitors identify those children most at risk of a scald and prevent injuries ...
Scientists demonstrate pear shaped atomic nuclei
2013-05-09
Scientists at the University of Liverpool have shown that some atomic nuclei can assume the shape of a pear which contributes to our understanding of nuclear structure and the underlying fundamental interactions.
Most nuclei that exist naturally are not spherical but have the shape of a rugby ball. While state-of-the-art theories are able to predict this, the same theories have predicted that for some particular combinations of protons and neutrons, nuclei can also assume very asymmetric shapes, like a pear where there is more mass at one end of the nucleus than the ...
LAST 30 PRESS RELEASES:
New guidelines for managing blood cancers in pregnancy
New study suggests RNA present on surfaces of leaves may shape microbial communities
U.S. suffers from low social mobility. Is sprawl partly to blame?
Research spotlight: Improving predictions about brain cancer outcomes with the right imaging criteria
New UVA professor’s research may boost next-generation space rockets
Multilingualism improves crucial cognitive functions in autistic children
The carbon in our bodies probably left the galaxy and came back on cosmic ‘conveyer belt’
Scientists unveil surprising human vs mouse differences in a major cancer immunotherapy target
NASA’s LEXI will provide X-ray vision of Earth’s magnetosphere
A successful catalyst design for advanced zinc-iodine batteries
AMS Science Preview: Tall hurricanes, snow and wildfire
Study finds 25% of youth experienced homelessness in Denver in 2021, significantly higher than known counts
Integrated spin-wave quantum memory
Brain study challenges long-held views about Parkinson's movement disorders
Mental disorders among offspring prenatally exposed to systemic glucocorticoids
Trends in screening for social risk in physician practices
Exposure to school racial segregation and late-life cognitive outcomes
AI system helps doctors identify patients at risk for suicide
Advanced imaging uncovers hidden metastases in high-risk prostate cancer cases
Study reveals oldest-known evolutionary “arms race”
People find medical test results hard to understand, increasing overall worry
Mizzou researchers aim to reduce avoidable hospitalizations for nursing home residents with dementia
National Diabetes Prevention Program saves costs for enrollees
Research team to study critical aspects of Alzheimer’s and dementia healthcare delivery
Major breakthrough for ‘smart cell’ design
From CO2 to acetaldehyde: Towards greener industrial chemistry
Unlocking proteostasis: A new frontier in the fight against neurodegenerative diseases like Alzheimer's
New nanocrystal material a key step toward faster, more energy-efficient computing
One of the world’s largest social programs greatly reduced tuberculosis among the most vulnerable
Surprising ‘two-faced’ cancer gene role supports paradigm shift in predicting disease
[Press-News.org] Advance in tuberous sclerosis brain scienceMay is Tuberous Sclerosis Complex awareness month