PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Artificial forest for solar water-splitting

Berkeley Lab researchers report first fully integrated artificial photosynthesis nanosystem

2013-05-17
(Press-News.org) In the wake of the sobering news that atmospheric carbon dioxide is now at its highest level in at least three million years, an important advance in the race to develop carbon-neutral renewable energy sources has been achieved. Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have reported the first fully integrated nanosystem for artificial photosynthesis. While "artificial leaf" is the popular term for such a system, the key to this success was an "artificial forest."

"Similar to the chloroplasts in green plants that carry out photosynthesis, our artificial photosynthetic system is composed of two semiconductor light absorbers, an interfacial layer for charge transport, and spatially separated co-catalysts," says Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, who led this research. "To facilitate solar water- splitting in our system, we synthesized tree-like nanowire heterostructures, consisting of silicon trunks and titanium oxide branches. Visually, arrays of these nanostructures very much resemble an artificial forest."

Yang, who also holds appointments with the University of California Berkeley's Chemistry Department and Department of Materials Science and Engineering, is the corresponding author of a paper describing this research in the journal NANO Letters. The paper is titled "A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting." Co-authors are Chong Liu, Jinyao Tang, Hao Ming Chen and Bin Liu.

Solar technologies are the ideal solutions for carbon-neutral renewable energy – there's enough energy in one hour's worth of global sunlight to meet all human needs for a year. Artificial photosynthesis, in which solar energy is directly converted into chemical fuels, is regarded as one of the most promising of solar technologies. A major challenge for artificial photosynthesis is to produce hydrogen cheaply enough to compete with fossil fuels. Meeting this challenge requires an integrated system that can efficiently absorb sunlight and produce charge-carriers to drive separate water reduction and oxidation half-reactions.

"In natural photosynthesis the energy of absorbed sunlight produces energized charge-carriers that execute chemical reactions in separate regions of the chloroplast," Yang says. "We've integrated our nanowire nanoscale heterostructure into a functional system that mimics the integration in chloroplasts and provides a conceptual blueprint for better solar-to-fuel conversion efficiencies in the future."

When sunlight is absorbed by pigment molecules in a chloroplast, an energized electron is generated that moves from molecule to molecule through a transport chain until ultimately it drives the conversion of carbon dioxide into carbohydrate sugars. This electron transport chain is called a "Z-scheme" because the pattern of movement resembles the letter Z on its side. Yang and his colleagues also use a Z-scheme in their system only they deploy two Earth abundant and stable semiconductors – silicon and titanium oxide - loaded with co-catalysts and with an ohmic contact inserted between them. Silicon was used for the hydrogen-generating photocathode and titanium oxide for the oxygen-generating photoanode. The tree-like architecture was used to maximize the system's performance. Like trees in a real forest, the dense arrays of artificial nanowire trees suppress sunlight reflection and provide more surface area for fuel producing reactions.

"Upon illumination photo-excited electron−hole pairs are generated in silicon and titanium oxide, which absorb different regions of the solar spectrum," Yang says. "The photo-generated electrons in the silicon nanowires migrate to the surface and reduce protons to generate hydrogen while the photo-generated holes in the titanium oxide nanowires oxidize water to evolve oxygen molecules. The majority charge carriers from both semiconductors recombine at the ohmic contact, completing the relay of the Z-scheme, similar to that of natural photosynthesis."

Under simulated sunlight, this integrated nanowire-based artificial photosynthesis system achieved a 0.12-percent solar-to-fuel conversion efficiency. Although comparable to some natural photosynthetic conversion efficiencies, this rate will have to be substantially improved for commercial use. However, the modular design of this system allows for newly discovered individual components to be readily incorporated to improve its performance. For example, Yang notes that the photocurrent output from the system's silicon cathodes and titanium oxide anodes do not match, and that the lower photocurrent output from the anodes is limiting the system's overall performance.

"We have some good ideas to develop stable photoanodes with better performance than titanium oxide," Yang says. "We're confident that we will be able to replace titanium oxide anodes in the near future and push the energy conversion efficiency up into single digit percentages."



INFORMATION:



This research was supported by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.



ELSE PRESS RELEASES FROM THIS DATE:

Can math models of gaming strategies be used to detect terrorism networks?

2013-05-17
Philadelphia, PA— The answer is yes, according to a paper in the SIAM Journal on Discrete Mathematics. In a paper published in the journal last month, authors Anthony Bonato, Dieter Mitsche, and Pawel Pralat describe a mathematical model to disrupt flow of information in a complex real-world network, such as a terrorist organization, using minimal resources. Terror networks are comparable in their structure to hierarchical organization in companies and certain online social networks, where information flows in one direction from a source, which produces the information ...

Gene involved in neurodegeneration keeps clock running

2013-05-17
Northwestern University scientists have shown a gene involved in neurodegenerative disease also plays a critical role in the proper function of the circadian clock. In a study of the common fruit fly, the researchers found the gene, called Ataxin-2, keeps the clock responsible for sleeping and waking on a 24-hour rhythm. Without the gene, the rhythm of the fruit fly's sleep-wake cycle is disturbed, making waking up on a regular schedule difficult for the fly. The discovery is particularly interesting because mutations in the human Ataxin-2 gene are known to cause ...

Body mass index of low income African-Americans linked to proximity of fast food restaurants

2013-05-17
HOUSTON ­­– African-American adults living closer to a fast food restaurant had a higher body mass index (BMI) than those who lived further away from fast food, according to researchers at The University of Texas MD Anderson Cancer Center, and this association was particularly strong among those with a lower income. A new study published online in the American Journal of Public Health indicates higher BMI associates with residential proximity to a fast food restaurant, and among lower-income African-Americans, the density, or number, of fast food restaurants within two ...

Research into carbon storage in Arctic tundra reveals unexpected insight into ecosystem resiliency

2013-05-17
(Santa Barbara, Calif.) –– When UC Santa Barbara doctoral student Seeta Sistla and her adviser, environmental studies professor Josh Schimel, went north not long ago to study how long-term warming in the Arctic affects carbon storage, they had made certain assumptions. "We expected that because of the long-term warming, we would have lost carbon stored in the soil to the atmosphere," said Schimel. The gradual warming, he explained, would accelerate decomposition on the upper layers of what would have previously been frozen or near-frozen earth, releasing the greenhouse ...

Bach to the blues, our emotions match music to colors

2013-05-17
Whether we're listening to Bach or the blues, our brains are wired to make music-color connections depending on how the melodies make us feel, according to new research from the University of California, Berkeley. For instance, Mozart's jaunty Flute Concerto No. 1 in G major is most often associated with bright yellow and orange, whereas his dour Requiem in D minor is more likely to be linked to dark, bluish gray. Moreover, people in both the United States and Mexico linked the same pieces of classical orchestral music with the same colors. This suggests that humans ...

Healthy companies and healthy regions: Connecting the dots

2013-05-17
In today's virtual world, it's easy to downplay the significance of place. Yet when it comes to regional prosperity, geography matters. Income and job growth is not random but rather spill over from one region to another, meaning that merely being next to a prosperous region will make your own economy more vibrant. This may sound like a no-brainer, but until recently it's been hard to prove from a statistical perspective. Yet by using new models that factor in location and blending microeconomic ideas with macro ones, researchers at the Edward Lowe Foundation's Institute ...

Add boron for better batteries

2013-05-17
Frustration led to revelation when Rice University scientists determined how graphene might be made useful for high-capacity batteries. Calculations by the Rice lab of theoretical physicist Boris Yakobson found a graphene/boron anode should be able to hold a lot of lithium and perform at a proper voltage for use in lithium-ion batteries. The discovery appears in the American Chemical Society's Journal of Physical Chemistry Letters. The possibilities offered by graphene get clearer by the day as labs around the world grow and test the one-atom-thick form of carbon. Because ...

UT Arlington physicist's tool has potential for brain mapping

2013-05-17
A new tool being developed by UT Arlington assistant professor of physics could help scientists map and track the interactions between neurons inside different areas of the brain. The journal Optics Letters recently published a paper by Samarendra Mohanty on the development of a fiber-optic, two-photon, optogenetic stimulator and its use on human cells in a laboratory. The tiny tool builds on Mohanty's previous discovery that near-infrared light can be used to stimulate a light-sensitive protein introduced into living cells and neurons in the brain. This new method could ...

70's-era physics prediction finally confirmed

2013-05-17
City College of New York Assistant Professor of Physics Cory Dean, who recently arrived from Columbia University where he was a post-doctoral researcher, and research teams from Columbia and three other institutions have definitively proven the existence of an effect known as Hofstadter's Butterfly. The phenomenon, a complex pattern of the energy states of electrons that resembles a butterfly, has appeared in physics textbooks as a theoretical concept of quantum mechanics for nearly 40 years. However, it had never been directly observed until now. Confirming its existence ...

New method proposed for detecting gravitational waves from ends of universe

2013-05-17
RENO, Nev. – A new window into the nature of the universe may be possible with a device proposed by scientists at the University of Nevada, Reno and Stanford University that would detect elusive gravity waves from the other end of the cosmos. Their paper describing the device and process was published in the prestigious physics journal Physical Review Letters. "Gravitational waves represent one of the missing pieces of Einstein's theory of general relativity," Andrew Geraci, University of Nevada, Reno physics assistant professor, said. "While there is a global effort ...

LAST 30 PRESS RELEASES:

Climate change driving ‘cost-of-living' squeeze in lizards

Stem Cell Reports seeks applications for its Early Career Scientist Editorial Board

‘Brand new physics’ for next generation spintronics

Pacific Islander teens assert identity through language

White House honors Tufts economist

Sharp drop in mortality after 41 weeks of pregnancy

Flexible electronics integrated with paper-thin structure for use in space

Immune complex shaves stem cells to protect against cancer

In the Northeast, 50% of adult ticks carry Lyme disease carrying bacteria

U of A Cancer Center clinical trial advances research in treatment of biliary tract cancers

Highlighting the dangers of restricting discussions of structural racism

NYU Tandon School of Engineering receives nearly $10 million from National Telecommunications and Information Administration

NASA scientists find new human-caused shifts in global water cycle

This tiny galaxy is answering some big questions

Large and small galaxies may grow in ways more similar than expected

The ins and outs of quinone carbon capture

Laboratory for Laser Energetics at the University of Rochester launches IFE-STAR ecosystem and workforce development initiatives

Most advanced artificial touch for brain-controlled bionic hand

Compounding drought and climate effects disrupt soil water dynamics in grasslands

Multiyear “megadroughts” becoming longer and more severe under climate change

Australopithecines at South African cave site were not eating substantial amounts of meat

An AI model developed to design proteins simulates 500 million years of protein evolution in developing new fluorescent protein

Fine-tuned brain-computer interface makes prosthetic limbs feel more real

New chainmail-like material could be the future of armor

The megadroughts are upon us

Eavesdropping on organs: Immune system controls blood sugar levels

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors

New study reveals how climate change may alter hydrology of grassland ecosystems

Polymer research shows potential replacement for common superglues with a reusable and biodegradable alternative 

Research team receives $1.5 million to study neurological disorders linked to long COVID

[Press-News.org] Artificial forest for solar water-splitting
Berkeley Lab researchers report first fully integrated artificial photosynthesis nanosystem