(Press-News.org) A new study of both computer-created and natural proteins suggests that the number of unique pockets – sites where small molecule pharmaceutical compounds can bind to proteins – is surprisingly small, meaning drug side effects may be impossible to avoid. The study also found that the fundamental biochemical processes needed for life could have been enabled by the simple physics of protein folding.
Studying a set of artificial proteins and comparing them to natural proteins, researchers at the Georgia Institute of Technology have concluded that there may be no more than about 500 unique protein pocket configurations that serve as binding sites for small molecule ligands. Therefore, the likelihood that a molecule intended for one protein target will also bind with an unintended target is significant, said Jeffrey Skolnick a professor in the School of Biology at Georgia Tech.
"Our study provides a rationalization for why a lot of drugs have significant side effects – because that is intrinsic to the process," said Skolnick. "There are only a relatively small number of different ligand binding pockets. The likelihood of having geometry in an amino acid composition that will bind the same ligand turns out to be much higher than anyone would have anticipated. This means that the idea that a small molecule could have just one protein target can't be supported."
Research on the binding pockets was scheduled to be published May 20 in the early edition of the journal Proceedings of the National Academy of Sciences. The research was supported by the National Institutes of Health (NIH).
Skolnick and collaborator Mu Gao have been studying the effects of physics on the activity of protein binding and contrasting the original conditions created by the folding of amino acid residues against the role played by evolution in optimizing the process.
"The basic physics of the system provides the mechanism for molecules to bind to proteins," said Skolnick, who is director of the Center for the Study of Systems Biology at Georgia Tech. "You don't need evolution to have a system that works on at least a low level. In other words, proteins are inherently capable of engaging in biochemical function without evolution's selection. Beyond unintended drug effects, this has a lot of implications for the biochemical component of the origins of life."
Binding pockets on proteins are formed by the underlying secondary structure of the amino acids, which is directed by hydrogen bonding in the chemistry. That allows formation of similar pockets on many different proteins, even those that are not directly related to one another.
"You could have the same or very similar pockets on the same protein, the same pockets on similar proteins, the same pockets on completely dissimilar proteins that have no evolutionary relationship. In proteins that are related evolutionarily or that have similar structures, you could have very dissimilar pockets," said Skolnick, who is also a Georgia Research Alliance Eminent Scholar. "This helps explain why we see unintended effects of drugs, and opens up a new paradigm for how one has to think about discovering drugs."
The implications of this "biochemical noise" for the drug discovery process could be significant. To counter the impact of unintended effects, drug developers will need to know more about the available pockets so they can avoid affecting binding locations that are also located on proteins critical to life processes. If the inevitable unintended binding takes place on less critical proteins, the side effects may be less severe.
In addition, drug development could also move to a higher level, examining the switches that modulate the activity of proteins beyond binding sites. That may require a different approach to drug development.
"The strategy for minimizing side effects and maximizing positive effects may have to operate at a higher level," he said. "You are never going to be able to design unintended binding effects away. But you can minimize the undesirable effects to some extent."
In their study, Skolnick and Gao used computer simulations to produce a series of artificial proteins that were folded according the laws of physics, but not optimized for function. Using an algorithm that compares pairs of pockets and assesses the statistical significance of their structural overlap, they analyzed the similarity between the binding pockets in the artificial proteins and the pockets on a series of native proteins. The artificial pockets all had corresponding pockets on the natural proteins, suggesting that the simple physics of folding has been a major factor in development of the pockets.
"This is how life, at least the biochemistry of life, could have gotten started," said Skolnick. "Evolution would have optimized the functions, but you don't need that to get started at a low level of efficiency. If you had a soup of our artificial proteins, even with no selection you could at least do low-level biochemistry."
Though the basic biochemistry of life was made possible by simple physics, optimizing the binding process to allow the efficiencies seen in modern organisms would have required evolutionary selection.
"This is the first time that it has been shown that side effects of drugs are an inherent, fundamental property of proteins rather than a property that can be controlled for in the design," Skolnick added. "The physics involved is more important than had been generally appreciated.
INFORMATION:
Research reported in this news release was supported by the Institute of General Medical Sciences of the National Institutes of Health (NIH) under award number GM48835. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
CITATION: Jeffrey Skolnick and Mu Gao, "Interplay of physics and evolution in the likely origin of protein biochemical function," (Proceedings of the National Academy of Sciences, 2013).
END
A new diagnostic test for a worm infection that can lead to severe enlargement and deformities of the legs and genitals is far more sensitive than the currently used test, according to results of a field study in Liberia, in West Africa, where the infection is endemic.
The new test found evidence of the infection – lymphatic filariasis – in many more people that the standard test had missed.
The study, the first to independently evaluate the new test, was led by researchers at Washington University School of Medicine in St. Louis and funded by the Bill & Melinda Gates ...
Women who smoke during pregnancy increase the risk of both obesity and gestational diabetes, in their daughters, concludes research published in Diabetologia, the journal of the European Association for the Study of Diabetes. The study is by Dr Kristina Mattsson, Lund University, Sweden, and colleagues including Dr Matthew Longnecker from the National Institute on Environmental Health Sciences at the U.S.National Institutes of Health, North Carolina, USA.
While the relation of prenatal tobacco exposure to negative outcomes in childhood has been much studied, reports on ...
Parasitic wasps switch off the immune systems of fruit flies by draining calcium from the flies' blood cells, a finding that offers new insight into how pathogens break through a host's defenses.
"We believe that we have discovered an important component of cellular immunity, one that parasites have learned to take advantage of," says Emory University biologist Todd Schlenke, whose lab led the research.
The Proceedings of the National Academy of Sciences (PNAS) published the results, showing how a wasp version of a conserved protein called SERCA, which normally functions ...
LEAWOOD, Kan. – Primary care practice transformation on a large scale is the cornerstone of current health care reform efforts aimed at achieving better outcomes, better value and better experience of care. Amid emerging evidence that transformation toward the patient-centered medical home model offers a viable solution in today's health care environment, the U.S. Department of Health and Human Services' Agency for Healthcare Research and Quality funded 14 studies to learn more about the processes and determinants of successful change from practices that had already demonstrated ...
Researchers have pinpointed a catalytic trigger for the onset of Alzheimer's disease – when the fundamental structure of a protein molecule changes to cause a chain reaction that leads to the death of neurons in the brain.
For the first time, scientists at Cambridge's Department of Chemistry have been able to map in detail the pathway that generates "aberrant" forms of proteins which are at the root of neurodegenerative conditions such as Alzheimer's.
They believe the breakthrough is a vital step closer to increased capabilities for earlier diagnosis of neurological disorders ...
VIDEO:
This video shows the development of the frontal and temporal regions of the cerebral cortex in preterm infants during the last three months before the normal time of birth, turning...
Click here for more information.
Imaging technique shows premature birth interrupts vital brain development processes, leading to reduced cognitive abilities in infants
Researchers from King's College London have for the first time used a novel form of MRI to identify crucial developmental ...
Philadelphia, Pa. (May 20, 2013) - A new "telerehabilitation" approach lets physical therapists assess patients with low back pain (LBP) over the Internet, with good accuracy compared with face-to-face examinations, reports a study in the May 15 issue of Spine. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
Taking advantage of Skype and other widely-used services may make telerehabilitation a more feasible alternative to in-person clinic visits, according to the new research by Prof. Manuel Arroyo-Morales and colleagues of ...
MAYWOOD, Il. - Nearly three out of four pregnant women experience constipation, diarrhea or other bowel disorders during their pregnancies, a Loyola University Medical Center study has found.
But such bowel disorders have only minimal impacts on pregnant women's quality of life, the study found.
The study by senior author Scott Graziano, MD and Payton Johnson was presented during the American Congress of Obstetricians and Gynecologists 61st Annual Clinical Meeting in New Orleans.
One hundred and four pregnant women were enrolled and completed the first trimester ...
RICHLAND, Wash. – Enough Northwest wind energy to power about 85,000 homes each month could be stored in porous rocks deep underground for later use, according to a new, comprehensive study. Researchers at the Department of Energy's Pacific Northwest National Laboratory and Bonneville Power Administration identified two unique methods for this energy storage approach and two eastern Washington locations to put them into practice.
Compressed air energy storage plants could help save the region's abundant wind power – which is often produced at night when winds are strong ...
A team of University of Pennsylvania engineers has used a pattern of nanoantennas to develop a new way of turning infrared light into mechanical action, opening the door to more sensitive infrared cameras and more compact chemical-analysis techniques.
The research was conducted by assistant professor Ertugrul Cubukcu and postdoctoral researcher Fei Yi, along with graduate students Hai Zhu and Jason C. Reed, all of the Department of Material Science and Engineering in Penn's School of Engineering and Applied Science.
It was published in the journal Nano Letters.
Detecting ...