(Press-News.org) Researchers have pinpointed a catalytic trigger for the onset of Alzheimer's disease – when the fundamental structure of a protein molecule changes to cause a chain reaction that leads to the death of neurons in the brain.
For the first time, scientists at Cambridge's Department of Chemistry have been able to map in detail the pathway that generates "aberrant" forms of proteins which are at the root of neurodegenerative conditions such as Alzheimer's.
They believe the breakthrough is a vital step closer to increased capabilities for earlier diagnosis of neurological disorders such as Alzheimer's and Parkinson's, and opens up possibilities for a new generation of targeted drugs, as scientists say they have uncovered the earliest stages of the development of Alzheimer's that drugs could possibly target.
The study, published today in the journal PNAS, is a milestone in the long-term research established in Cambridge by Professor Christopher Dobson and his colleagues, following the realisation by Dobson of the underlying nature of protein 'misfolding' and its connection with disease over 15 years ago.
The research is likely to have a central role to play in diagnostic and drug development for dementia-related diseases, which are increasingly prevalent and damaging as populations live longer.
"There are no disease modifying therapies for Alzheimer's and dementia at the moment, only limited treatment for symptoms. We have to solve what happens at the molecular level before we can progress and have real impact," said Dr Tuomas Knowles, lead author of the study and long-time collaborator of Professor Dobson.
"We've now established the pathway that shows how the toxic species that cause cell death, the oligomers, are formed. This is the key pathway to detect, target and intervene – the molecular catalyst that underlies the pathology."
In 2010, the Alzheimer's Research Trust showed that dementia costs the UK economy over £23 billion, more than cancer and heart disease combined. Just last week, PM David Cameron urged scientists and clinicians to work together to "improve treatments and find scientific breakthroughs" to address "one of the biggest social and healthcare challenges we face."
The neurodegenerative process giving rise to diseases such as Alzheimer's is triggered when the normal structures of protein molecules within cells become corrupted.
Protein molecules are made in cellular 'assembly lines' that join together chemical building blocks called amino acids in an order encoded in our DNA. New proteins emerge as long, thin chains that normally need to be folded into compact and intricate structures to carry out their biological function.
Under some conditions, however, proteins can 'misfold' and snag surrounding normal proteins, which then tangle and stick together in clumps which build to masses, frequently millions, of malfunctioning molecules that shape themselves into unwieldy protein tendrils.
The abnormal tendril structures, called 'amyloid fibrils', grow outwards around the location where the focal point, or 'nucleation' of these abnormal "species" occurs.
Amyloid fibrils can form the foundations of huge protein deposits – or plaques – long-seen in the brains of Alzheimer's sufferers, and once believed to be the cause of the disease, before the discovery of 'toxic oligomers' by Dobson and others a decade or so ago.
A plaque's size and density renders it insoluble, and consequently unable to move. Whereas the oligomers, which give rise to Alzheimer's disease, are small enough to spread easily around the brain - killing neurons and interacting harmfully with other molecules - but how they were formed was until now a mystery.
The new work, in large part carried out by researcher Samuel Cohen, shows that once a small but critical level of malfunctioning protein 'clumps' have formed, a runaway chain reaction is triggered that multiplies exponentially the number of these protein composites, activating new focal points through 'nucleation'.
It is this secondary nucleation process that forges juvenile tendrils, initially consisting of clusters that contain just a few protein molecules. Small and highly diffusible, these are the 'toxic oligomers' that careen dangerously around the brain cells, killing neurons and ultimately causing loss of memory and other symptoms of dementia.
The researchers brought together kinetic experiments with a theoretical framework based on master equations, tools commonly used in other areas of chemistry and physics but had not been exploited to their full potential in the study of protein malfunction before.
The latest research follows hard on the heels of another ground breaking study, published in April of this year again in PNAS, in which the Cambridge group, in Collaboration with Colleagues in London and at MIT, worked out the first atomic structure of one of the damaging amyloid fibril protein tendrils. They say the years spent developing research techniques are really paying off now, and they are starting to solve "some of the key mysteries" of these neurodegenerative diseases.
"We are essentially using a physical and chemical methods to address a biomolecular problem, mapping out the networks of processes and dominant mechanisms to 'recreate the crime scene' at the molecular root of Alzheimer's disease," explained Knowles.
"Increasingly, using quantitative experimental tools and rigorous theoretical analysis to understand complex biological processes are leading to exciting and game-changing results. With a disease like Alzheimer's, you have to intervene in a highly specific manner to prevent the formation of the toxic agents. Now we've found how the oligomers are created, we know what process we need to turn off."
INFORMATION:
Molecular trigger for Alzheimer's disease identified
2013-05-21
ELSE PRESS RELEASES FROM THIS DATE:
Imaging technique shows premature birth interrupts vital brain development processes leading to reduced cognitive abilities in infants
2013-05-21
VIDEO:
This video shows the development of the frontal and temporal regions of the cerebral cortex in preterm infants during the last three months before the normal time of birth, turning...
Click here for more information.
Imaging technique shows premature birth interrupts vital brain development processes, leading to reduced cognitive abilities in infants
Researchers from King's College London have for the first time used a novel form of MRI to identify crucial developmental ...
Telerehabilitation allows accurate assessment of patients with low back pain
2013-05-21
Philadelphia, Pa. (May 20, 2013) - A new "telerehabilitation" approach lets physical therapists assess patients with low back pain (LBP) over the Internet, with good accuracy compared with face-to-face examinations, reports a study in the May 15 issue of Spine. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
Taking advantage of Skype and other widely-used services may make telerehabilitation a more feasible alternative to in-person clinic visits, according to the new research by Prof. Manuel Arroyo-Morales and colleagues of ...
72 percent of pregnant women experience constipation and other bowel problems
2013-05-21
MAYWOOD, Il. - Nearly three out of four pregnant women experience constipation, diarrhea or other bowel disorders during their pregnancies, a Loyola University Medical Center study has found.
But such bowel disorders have only minimal impacts on pregnant women's quality of life, the study found.
The study by senior author Scott Graziano, MD and Payton Johnson was presented during the American Congress of Obstetricians and Gynecologists 61st Annual Clinical Meeting in New Orleans.
One hundred and four pregnant women were enrolled and completed the first trimester ...
Not just blowing in the wind: Compressing air for renewable energy storage
2013-05-21
RICHLAND, Wash. – Enough Northwest wind energy to power about 85,000 homes each month could be stored in porous rocks deep underground for later use, according to a new, comprehensive study. Researchers at the Department of Energy's Pacific Northwest National Laboratory and Bonneville Power Administration identified two unique methods for this energy storage approach and two eastern Washington locations to put them into practice.
Compressed air energy storage plants could help save the region's abundant wind power – which is often produced at night when winds are strong ...
Penn engineers' nanoantennas improve infrared sensing
2013-05-21
A team of University of Pennsylvania engineers has used a pattern of nanoantennas to develop a new way of turning infrared light into mechanical action, opening the door to more sensitive infrared cameras and more compact chemical-analysis techniques.
The research was conducted by assistant professor Ertugrul Cubukcu and postdoctoral researcher Fei Yi, along with graduate students Hai Zhu and Jason C. Reed, all of the Department of Material Science and Engineering in Penn's School of Engineering and Applied Science.
It was published in the journal Nano Letters.
Detecting ...
Coming into existence
2013-05-21
HERALDING
Entanglement, by general consensus of physicists, is the weirdest part of quantum science. To say that two particles, A and B, are entangled means that they are actually two parts of an inseparable quantum thing. An important consequence of this inherent kinship is that measuring a property of A (say, the particle's polarization) is necessarily to know the corresponding property of B, even if you're not there with a detector to observe B and even if (as explained below) the existence of that property had no prior fixed value until the moment particle ...
Timing of cancer radiation therapy may minimize hair loss, researchers say
2013-05-21
LA JOLLA, CA---Discovering that mouse hair has a circadian clock - a 24-hour cycle of growth followed by restorative repair - researchers suspect that hair loss in humans from toxic cancer radiotherapy and chemotherapy might be minimized if these treatments are given late in the day.
The study, which appears in the early online edition of the Proceedings of the National Academy of Sciences (PNAS), found that mice lost 85 percent of their hair if they received radiation therapy in the morning, compared to a 17 percent loss when treatment occurred in the evening.
The ...
Opening doors to foldable electronics with inkjet-printed graphene
2013-05-21
Imagine a bendable tablet computer or an electronic newspaper that could fold to fit in a pocket.
The technology for these devices may not be so far off. Northwestern University researchers have recently developed a graphene-based ink that is highly conductive and tolerant to bending, and they have used it to inkjet-print graphene patterns that could be used for extremely detailed, conductive electrodes.
The resulting patterns are 250 times more conductive than previous attempts to print graphene-based electronic patterns and could be a step toward low-cost, foldable ...
Researchers perform fastest measurements ever made of ion channel proteins
2013-05-21
New York, NY—May 20, 2013—The miniaturization of electronics continues to create unprecedented capabilities in computer and communications applications, enabling handheld wireless devices with tremendous computing performance operating on battery power. This same miniaturization of electronic systems is also creating new opportunities in biotechnology and biophysics.
A team of researchers at Columbia Engineering has used miniaturized electronics to measure the activity of individual ion-channel proteins with temporal resolution as fine as one microsecond, producing the ...
Amazon River exhales virtually all carbon taken up by rain forest
2013-05-21
The Amazon rain forest, popularly known as the lungs of the planet, inhales carbon dioxide as it exudes oxygen. Plants use carbon dioxide from the air to grow parts that eventually fall to the ground to decompose or get washed away by the region's plentiful rainfall.
Until recently people believed much of the rain forest's carbon floated down the Amazon River and ended up deep in the ocean. University of Washington research showed a decade ago that rivers exhale huge amounts of carbon dioxide – though left open the question of how that was possible, since bark and stems ...