(Press-News.org) The Amazon rain forest, popularly known as the lungs of the planet, inhales carbon dioxide as it exudes oxygen. Plants use carbon dioxide from the air to grow parts that eventually fall to the ground to decompose or get washed away by the region's plentiful rainfall.
Until recently people believed much of the rain forest's carbon floated down the Amazon River and ended up deep in the ocean. University of Washington research showed a decade ago that rivers exhale huge amounts of carbon dioxide – though left open the question of how that was possible, since bark and stems were thought to be too tough for river bacteria to digest.
A study published this week in Nature Geoscience resolves the conundrum, proving that woody plant matter is almost completely digested by bacteria living in the Amazon River, and that this tough stuff plays a major part in fueling the river's breath.
The finding has implications for global carbon models, and for the ecology of the Amazon and the world's other rivers.
"People thought this was one of the components that just got dumped into the ocean," said first author Nick Ward, a UW doctoral student in oceanography. "We've found that terrestrial carbon is respired and basically turned into carbon dioxide as it travels down the river."
Tough lignin, which helps form the main part of woody tissue, is the second most common component of terrestrial plants. Scientists believed that much of it got buried on the seafloor to stay there for centuries or millennia. The new paper shows river bacteria break it down within two weeks, and that just 5 percent of the Amazon rainforest's carbon ever reaches the ocean.
"Rivers were once thought of as passive pipes," said co-author Jeffrey Richey, a UW professor of oceanography. "This shows they're more like metabolic hotspots."
When previous research showed how much carbon dioxide was outgassing from rivers, scientists knew it didn't add up. They speculated there might be some unknown, short-lived carbon source that freshwater bacteria could turn into carbon dioxide.
"The fact that lignin is proving to be this metabolically active is a big surprise," Richey said. "It's a mechanism for the rivers' role in the global carbon cycle – it's the food for the river breath."
The Amazon alone discharges about one-fifth of the world's freshwater and plays a large role in global processes, but it also serves as a test bed for natural river ecosystems.
Richey and his collaborators have studied the Amazon River for more than three decades. Earlier research took place more than 500 miles upstream. This time the U.S. and Brazilian team sought to understand the connection between the river and ocean, which meant working at the mouth of the world's largest river – a treacherous study site.
"There's a reason that no one's really studied in this area," Ward said. "Pulling it off has been quite a challenge. It's a humongous, sloppy piece of water."
The team used flat-bottomed boats to traverse the three river mouths, each so wide that you cannot see land, in water so rich with sediment that it looks like chocolate milk. Tides raise the ocean by 30 feet, reversing the flow of freshwater at the river mouth, and winds blow at up to 35 mph.
Under these conditions, Ward collected river water samples in all four seasons. He compared the original samples with ones left to sit for up to a week at river temperatures. Back at the UW, he used newly developed techniques to scan the samples for some 100 compounds, covering 95 percent of all plant-based lignin. Previous techniques could identify only 1 percent of the plant-based carbon in the water.
Based on the results, the authors estimate that about 45 percent of the Amazon's lignin breaks down in soils, 55 percent breaks down in the river system, and 5 percent reaches the ocean, where it may break down or sink to the ocean floor.
"People had just assumed, 'Well, it's not energetically feasible for an organism to break lignin apart, so why would they?'" Ward said. "We're thinking that as rain falls over the land it's taking with it these lignin compounds, but it's also taking with it the bacterial community that's really good at eating the lignin."
###
The research was supported by the Gordon and Betty Moore Foundation, the National Science Foundation and the Research Council for the State of São Paulo. Co-authors are Richard Keil at the UW; Patricia Medeiros and Patricia Yager at the University of Georgia; Daimio Brito and Alan Cunha at the Federal University of Amap in Brazil; Thorsten Dittmar at Carl von Ossietzky University in Germany; and Alex Krusche at University of São Paulo in Brazil.
For more information, contact Ward at nickward@uw.edu or 858-531-1558 and Richey at jrichey@uw.edu or 206-368-1906.
END
COLUMBUS, Ohio – New research suggests that a compound abundant in the Mediterranean diet takes away cancer cells' "superpower" to escape death.
By altering a very specific step in gene regulation, this compound essentially re-educates cancer cells into normal cells that die as scheduled.
One way that cancer cells thrive is by inhibiting a process that would cause them to die on a regular cycle that is subject to strict programming. This study in cells, led by Ohio State University researchers, found that a compound in certain plant-based foods, called apigenin, could ...
Individuals who learn two languages at an early age seem to switch back and forth between separate "sound systems" for each language, according to new research conducted at the University of Arizona.
The research, to be published in a forthcoming issue of Psychological Science, a journal of the Association for Psychological Science, addresses enduring questions in bilingual studies about how bilingual speakers hear and process sound in two different languages.
"A lot of research has shown that bilinguals are pretty good at accommodating speech variation across languages, ...
Meeting the demand for more data storage in smaller volumes means using materials made up of ever-smaller magnets, or nanomagnets. One promising material for a potential new generation of recording media is an alloy of iron and platinum with an ordered crystal structure. Researchers led by Professor Kai Liu and graduate student Dustin Gilbert at the University of California, Davis, have now found a convenient way to make these alloys and tailor their properties.
"The relatively convenient synthesis conditions, along with the tunable magnetic properties, make these materials ...
Video games that pit players against human-looking characters may be more likely to provoke violent thoughts and words than games where monstrous creatures are the enemy, according to a new study by researchers at the University of Connecticut and Wake Forest University.
"The Perception of Human Appearance in Video Games: Toward an Understanding of the Effects of Player Perceptions of Game Features," published in the May 2013 issue of Mass Communication and Society, comes as lawmakers and the public are freshly debating the possible risks that violent games may pose to ...
ITHACA, N.Y. – Little is known about the effect of physical education (PE) on child weight, but a new study from Cornell University finds that increasing the amount of time that elementary schoolchildren spent in gym class reduces the probability of obesity.
The study represents some of the first evidence of a causal effect of PE on youth obesity, and is forthcoming in the Journal of Health Economics.
An early, online version of the study can be viewed at: http://www.sciencedirect.com/science/article/pii/S0167629613000556
The research offers support for the recommendations ...
VIDEO:
This video shows how threads stitched into the fabric can absorb, channel and collect fluids.
Click here for more information.
Waterproof fabrics that whisk away sweat could be the latest application of microfluidic technology developed by bioengineers at the University of California, Davis.
The new fabric works like human skin, forming excess sweat into droplets that drain away by themselves, said inventor Tingrui Pan, professor of biomedical engineering. One ...
WINSTON-SALEM, N.C. – May 20, 2013 – Nearly 20 percent of kidneys that are recovered from deceased donors in the U.S. are refused for transplant due to factors ranging from scarring in small blood vessels of the kidney's filtering units to the organ going too long without blood or oxygen. But, what if instead of being discarded, these organs could be "recycled" to help solve the critical shortage of donor organs?
Researchers at Wake Forest Baptist Medical Center and colleagues, reporting in the journal Biomaterials, found that human kidneys discarded for transplant can ...
CHAPEL HILL, N.C. -- Intensity-modulated radiation therapy has become the most commonly used type of radiation in prostate cancer, but research from the University of North Carolina suggests that the therapy may not be more effective than older, less expensive forms of radiation therapy in patients who have had a prostatectomy.
The comparative effectiveness study, published online May 20 by JAMA Internal Medicine, evaluated the long-term outcomes of prostate cancer patients who received radiation treatments following prostatectomies using conformal radiation therapy (CRT) ...
Amsterdam, NL, 20 May 2013 – While Huntington's disease (HD) is currently incurable, the HD research community anticipates that new disease-modifying therapies in development may slow or minimize disease progression. The success of HD research depends upon the identification of reliable and sensitive biomarkers to track disease and evaluate therapies, and these biomarkers may eventually be used as outcome measures in clinical trials. Biomarkers could be especially helpful to monitor changes during the time prior to diagnosis and appearance of overt symptomatology. Three ...
EAST LANSING, Mich. — Turns out, that old "practice makes perfect" adage may be overblown.
New research led by Michigan State University's Zach Hambrick finds that a copious amount of practice is not enough to explain why people differ in level of skill in two widely studied activities, chess and music.
In other words, it takes more than hard work to become an expert. Hambrick, writing in the research journal Intelligence, said natural talent and other factors likely play a role in mastering a complicated activity.
"Practice is indeed important to reach an elite level ...