PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Stanford scientists create novel silicon electrodes that improve lithium-ion batteries

2013-06-04
(Press-News.org) Stanford University scientists have dramatically improved the performance of lithium-ion batteries by creating novel electrodes made of silicon and conducting polymer hydrogel, a spongy material similar to that used in contact lenses and other household products.

Writing in the June 4 edition of the journal Nature Communications, the scientists describe a new technique for producing low-cost, silicon-based batteries with potential applications for a wide range of electrical devices.

"Developing rechargeable lithium-ion batteries with high energy density and long cycle life is of critical importance to address the ever-increasing energy storage needs for portable electronics, electric vehicles and other technologies," said study co-author Zhenan Bao, a professor of chemical engineering at Stanford.

To find a practical, inexpensive material that increases the storage capacity of lithium-ion batteries, Bao and her Stanford colleagues turned to silicon – an abundant, environmentally benign element with promising electronic properties.

"We've been trying to develop silicon-based electrodes for high-capacity lithium-ion batteries for several years," said study co-author Yi Cui, an associate professor of materials science and engineering at Stanford. "Silicon has 10 times the charge storage capacity of carbon, the conventional material used in lithium-ion electrodes. The problem is that silicon expands and breaks."

Studies have shown that silicon particles can undergo a 400-percent volume expansion when combined with lithium. When the battery is charged or discharged, the bloated particles tend to fracture and lose electrical contact. To overcome these technical constraints, the Stanford team used a fabrication technique called in situ synthesis polymerization that coats the silicon nanoparticles within the conducting hydrogel.

This technique allowed the scientists to create a stable lithium-ion battery that retained a high storage capacity through 5,000 cycles of charging and discharging.

"We attribute the exceptional electrochemical stability of the battery to the unique nanoscale architecture of the silicon-composite electrode," Bao said.

Using a scanning electron microscope, the scientists discovered that the porous hydrogel matrix is riddled with empty spaces that allow the silicon nanoparticles to expand when lithium is inserted. This matrix also forms a three-dimensional network that creates an electronically conducting pathway during charging and discharging.

"It turns out that hydrogel has binding sites that latch onto silicon particles really well and at the same time provide channels for the fast transport of electrons and lithium ions," explained Cui, a principal investigator with the Stanford Institute for Materials and Energy Sciences at the SLAC National Accelerator Laboratory. "That makes a very powerful combination."

A simple mixture of hydrogel and silicon proved far less effective than the in situ synthesis polymerization technique. "Making the hydrogel first and then mixing it with the silicon particles did not work well," Bao said. "It required an additional step that actually reduced the battery's performance. With our technique, each silicon nanoparticle is encapsulated within a conductive polymer surface coating and is connected to the hydrogel framework. That improves the battery's overall stability."

Hydrogel primarily consists of water, which can cause lithium-ion batteries to ignite – a potential problem that the research team had to address. "We utilized the three-dimensional network property of the hydrogel in the electrode, but in the final production phase, the water was removed," Bao said. "You don't want water inside a lithium-ion battery."

Although a number of technical issues remain, Cui is optimistic about potential commercial applications of the new technique to create electrodes made of silicon and other materials.

"The electrode fabrication process used in the study is compatible with existing battery manufacturing technology," he said. "Silicon and hydrogel are also inexpensive and widely available. These factors could allow high-performance silicon-composite electrodes to be scaled up for manufacturing the next generation of lithium-ion batteries. It's a very simple approach that's led to a very powerful result."



INFORMATION:



Former Stanford postdoctoral scholars Hui Wu, now a faculty member at Tsinghua University-Beijing, and Guihua Yu, now a faculty member at the University of Texas-Austin, are co-lead authors of the study. Other authors are Stanford visiting scholar Lijia Pan and graduate students Nan Liu and Matthew McDowell.

The research was supported by the Precourt Institute for Energy at Stanford and the U.S. Department of Energy through the SLAC Laboratory Directed Research and Development Program. Additional funding was provided by the Natural Science Foundation of China, the U.S. National Science Foundation and the Stanford Graduate Fellowships Program in Science and Engineering.

Mark Shwartz writes about energy technology at the Precourt Institute for Energy at Stanford University.

Related information:

Bao Group http://baogroup.stanford.edu/

Cui Group http://www.stanford.edu/group/cui_group/



ELSE PRESS RELEASES FROM THIS DATE:

Roman seawater concrete holds the secret to cutting carbon emissions

2013-06-04
The chemical secrets of a concrete Roman breakwater that has spent the last 2,000 years submerged in the Mediterranean Sea have been uncovered by an international team of researchers led by Paulo Monteiro of the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), a professor of civil and environmental engineering at the University of California, Berkeley. Analysis of samples provided by team member Marie Jackson pinpointed why the best Roman concrete was superior to most modern concrete in durability, why its manufacture was less environmentally ...

Stopping the worm from turning

2013-06-04
Despite the clear arguments for controlling parasitic infections, we know surprisingly little about the developmental processes in parasitic nematodes. A good model system for research is provided by Oesophagostomum dentatum, a roundworm which infects the large intestines of pigs, slowing the animals' growth and leading to significant economic losses. A number of chemicals are available to help keep the parasite in check but the worms are growing increasingly resistant to their use and so there is a substantial need for new methods of treatment. From eggs to parasites The ...

A new species of yellow slug moth from China

2013-06-04
The moth genus Monema is represented by medium-sized yellowish species. The genus belongs to the Limacodidae family also known as the slug moths due to the distinct resemblance of their caterpillars to some slug species. Some people know this family as the cup moths, the name derived from the peculiar looking, hard shell cocoon they form. A recent study of the representatives of the Monema genus in China records 4 species and a subspecies present in the country, one of which is newly described to science. The new species has the characteristic yellow coloration for ...

Quantum model helps solve mysteries of water

2013-06-04
A research team from the National Physical Laboratory (NPL), the University of Edinburgh and IBM's TJ Watson Research Center has revealed a major breakthrough in the modelling of water that could shed light on its mysterious properties. Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual molecules. Water derives many of its signature features from a combination of properties at the molecular level such as high polarizability, ...

Organic chemistry -- leading light waves astray

2013-06-04
The development of structured synthetic materials with unusual electromagnetic properties, so-called metamaterials, promises to provide access to special physical effects of great technological interest. Metamaterials have already been fabricated that have a negative refractive index for electromagnetic waves – bending them in the opposite sense to light waves entering water, for instance – which opens up completely novel opportunities for the manipulation of light. One of these makes it possible, in principle, to create cloaking devices that seem to make objects disappear. ...

Microbubbles point the way to a revolution in food processing

2013-06-04
Researchers at the University of Sheffield have found a more efficient way to dry products for food manufacture, using tiny, hot bubbles. Instead of boiling a product to evaporate water - the most common technique used by industry - the Sheffield team injected hot microbubbles through the liquid, causing the water to evaporate without boiling. Professor Will Zimmerman, who led the study, explains: "We've applied this principle, called 'cold boiling' to separate water from methanol. Although conventional bubbles have been used in evaporation processes before, they still ...

Innate immunity

2013-06-04
In animal cells, DNA molecules are normally restricted to the cell nucleus and the mitochondria. When DNA appears outside these organelles – in the so-called cytosol - it most probably originates from a bacterial pathogen or a DNA virus. This is why cytosolic DNA triggers a strong response by the innate immune system. However, various types of insult can also lead to the release into the cytosol of the cell's own DNA. In this case, the resulting immune response may precipitate an autoimmune disease. The innate immune system is the body's first line of defense against ...

Australian lake untouched by climate change

2013-06-04
Researchers at the University of Adelaide have found that a lake on an island off the coast of Queensland, Australia, has been relatively untouched by changes in climate for the past 7000 years, and has so far also resisted the impact of humans. Blue Lake, one of the largest lakes on North Stradbroke Island, southeast of Brisbane, has been the focus of research examining the lake's response to environmental change over time. Researchers studied the lake's water discharge, water quality and comparisons of historical photos over the past 117 years, as well as fossil pollen ...

The science of yellow snow

2013-06-04
New research from wildlife ecologists at Michigan Technological University indicates that white-tailed deer may be making the soil in their preferred winter homes unfit to grow the very trees that protect them there. Bryan Murray, a PhD candidate at Michigan Tech, and two faculty members, Professor Christopher Webster and Assistant Professor Joseph Bump, studied the effects on soil of the nitrogen-rich waste that white-tailed deer leave among stands of eastern hemlock, which are among their favorite wintering grounds in the harsh, snowy climate of northern Michigan. ...

Why innovation thrives in cities

2013-06-04
CAMBRIDGE, MA -- In 2010, in the journal Nature, a pair of physicists at the Santa Fe Institute showed that when the population of a city doubles, economic productivity goes up by an average of 130 percent. Not only does total productivity increase with increased population, but so does per-capita productivity. In the latest issue of Nature Communications, researchers from the MIT Media Laboratory's Human Dynamics Lab propose a new explanation for that "superlinear scaling": Increases in urban population density give residents greater opportunity for face-to-face interaction. The ...

LAST 30 PRESS RELEASES:

Novel photochromic glass can store rewritable 3D patterns

Sea sponge inspires super strong compressible material

AI generates playful, human-like games

Bacteria ‘leaking across stomach lining’ could indicate risk of gastric cancer, new study has found

Feeding anemone: Symbiote fish actively feed hosts in wild

New AI-powered tool could enhance traumatic brain injury investigations in forensics and law enforcement

A protein from tiny tardigrades may help cancer patients tolerate radiation therapy

Double network hydrogel polymers with rapid self-strengthening abilities

Schizophrenia is reflected in the brain structure

Researchers warn continuous glucose monitors can overestimate blood sugar levels

Colorectal cancer: Lipids can predict treatment efficacy

Physical activity boosts mental health in women with chronic pelvic pain disorders

New method searches through 10 sextillion drug molecules

Breakthrough in the development of a new low-cost computer

New computer model can predict the length of a household's displacement in any U.S. community after a disaster

At your service: How older adults embrace demand-responsive transportation

Enhancing lithium-ion battery performance with roll-to-roll compatible flash process technology

Simulating scientists: New tool for AI-powered scientific discovery

Helium in the Earth's core

Study: First female runner could soon break the 4-minute-mile barrier

High dietary fish intake may slow disability progression in MS

UK Armed Forces servicewomen face unique set of hurdles for abortion access/care

Use of strong synthetic opioids during surgery linked to poor composite experience of pain

UK innovation to transform treatment for people with type 2 diabetes worldwide

AI model can read ECGs to identify female patients at higher risk of heart disease

Biological organ ages predict disease risk decades in advance

New manzanita species discovered, already at risk

Giant ice bulldozers: How ancient glaciers helped life evolve

Toward high electro-optic performance in III-V semiconductors

In mouse embryos, sister cells commit suicide in unison

[Press-News.org] Stanford scientists create novel silicon electrodes that improve lithium-ion batteries