(Press-News.org) The World Health Organization lists shift work as a potential carcinogen, says Erik Herzog, PhD, Professor of Biology in Arts & Sciences at Washington University in St. Louis. And that's just one example among many of the troubles we cause ourselves when we override the biological clocks in our brains and pay attention instead to the mechanical clocks on our wrists.
In the June 5 issue of Neuron, Herzog and his colleagues report the discovery of a crucial part of the biological clock: the wiring that sets its accuracy to within a few minutes out of the 1440 minutes per day. This wiring uses the neurotransmitter, GABA, to connect the individual cells of the biological clock in a fast network that changes strength with time of day.
Daily rhythms of sleep and metabolism are driven by a biological clock in the suprachiasmatic nucleus (SCN), a structure in the brain made up of 20,000 neurons, all of which can keep daily (circadian) time individually.
If the SCN is to be a robust, but sensitive, timing system, the neurons must synchronize precisely with one another and adjust their rhythms to those of the environment.
Herzog's lab has discovered a push-pull system in the SCN that does both. In 2005 they reported that the neurons in the clock network communicate by means of a neuropeptide (VIP) that pushes them to synchronize with one another.
And, as they now report in Neuron, these neurons also communicate with GABA that pulls on them weakly, so they are not too tightly coupled.
Together these two networks (VIP and GABA) ensure the clock runs as coordinated, precise timepiece but one that can still adjust its timing to synchronize with the environment.
"We think the neurotransmitter network is there to introduce enough jitter into the system to allow the neurons to resynchronize when environmental cues change, as they do with the seasons," Herzog says.
But, he says, since this biological 'reset button' evolved long before mechanical clocks, artificial lights, and high-speed travel, it doesn't introduce enough jitter to allow us to adjust quickly to the extreme time shifts of modern life, such as flying "backward" (east) through several time zones.
Understanding the push-pull system in the SCN has enormous implications for public health, bearing, as it does, on daylight saving times, shift work, school starting times, medical intern schedules, truck driver hours, and many other issues where the clock in the brain is pitted against the clock in the hand.
Synchronizing the cellular clocks
The "clock" inside each SCN neuron depends on the cyclic expression of a family of genes such as the Period (PER) genes. The expression of these genes and the neuron's firing rate typically peak at mid-day and fall at night. The gene activity is like the cogs in a clock, and the electrical activity like the hands on the clock.
Each neuron in the SCN keeps time, but because they're different cells, they have slightly different rhythms. Some run a little bit fast and others a bit slow. If the SCN as a whole is to function as a clock, its neurons need to synchronize with one another.
The goal of the recent work in the Herzog lab has been to figure out how the clock cells are connected to each other. "It wasn't clear, for example, if each neuron communicated with just a few of its neighbors or with all of them," Herzog says.
Mark Freeman, a graduate student in the lab, developed a method for recording the firing rate of about 100 neurons simultanously on a multi-electrode array. "You float the SCN neurons down gently," Herzog says, "and the neurons will attach to the electrodes, creating a clock in a dish that will tick away for weeks or months."
Using these electrode arrays, his lab demonstrated that the neurons in the SCN are synchronized by the exchange of the neuropeptide VIP (vasoactive intestinal polypeptide), which alters the expression of PER to speed up or slow down neurons until they are all in synch.
These synchronized networks are very precise, says Herzog. If you let them free-run in constant darkness they will lose or gain only a few minutes out of the 1,440 minutes in a day. So they're accurate to within 1 or 2 percent.
But they're ever so slightly off the 24-hour cycle tied to one turn of the planet on its axis. Over time they would drift far enough off that cycle to be of little use to us, unless they also had some means of synchronizing to local time.
Resetting the cellular clocks
In the article published in Neuron, Herzog and his colleagues report on a second network in the biological clock.
In this network the connections are made by the neurotransmitter GABA (γ-amino-butyric acid). "We proved we had found a GABAergic network by applying drugs that block GABA receptors on the cells," Herzog says. "All of the connections we had mapped between neurons dropped out."
Remarkably, when the network drops out, the clock becomes more precise. So the GABAergic network destabilizes the clock; it jiggles it a little.
Herzog points out that the GABAergic network, is sparse, weak and fast (much faster than the VIP network, which relies on the slower action of a neuropeptide), as you might expect a jitter-generator to be.
"We think the GABAergic network is there to let our clocks adjust to environmental cues, such as gradual, seasonal changes in sunrise and sunset," says Herzog.
It's a bit like whacking an old television set that has lost vertical synch to get it to resynch with the broadcast signal.
But there isn't enough jitter in the clock to allow it to make abrupt adjustments, such as the one-hour forward jump when Daylight Savings Time starts. That "spring forward" has been statistically shown to increase the likelihood of heart attacks and car accidents, Herzog says.
Some sleep aids, such as benzodiazepines, that activate the GABA receptors may make the circadian clock a little more jittery, helping people adjust to big time jumps, such as flying across time zones. "But we don't yet know whether they can improve jetlag; if they do, we want to know if it is because they help you sleep on the long flight or because they help the biological clock adjust to the new time zone," Herzog cautions.
In any case, it is clear that if people repeatedly force the clock to reset, they throw off more than sleep. The biological clock regulates metabolism and cell division as well as sleep/wake cycles. So shift work, for example, is associated both with metabolic disorders, such as diabetes, and with the unregulated cell division that characterizes cancer.
Fighting our biological clocks does a lot more than make us crabby coffee drinkers.
INFORMATION:
View a YouTube video at: http://youtu.be/kqFc4wriBvE
Caption: Herzog points out that the neurons in the SCN are coupled oscillators, like these metronomes on a table that has enough give that each metronome's motion affects the others'. Like the metronomes, the neurons keep time individually and because they are coupled by the VIP network, they synchronize their beats. Video by the Ikeguchi Laboratory, in the graduate school of science and engineering at Saitama University in Japan. (You might want to turn down the sound before watching it.)
Scientists map the wiring of the biological clock
The connections make the clock precise but also let it adjust to changes in day/night cycles
2013-06-05
ELSE PRESS RELEASES FROM THIS DATE:
Study expands concerns about anesthesia's impact on the brain
2013-06-05
CINCINNATI – As pediatric specialists become increasingly aware that surgical anesthesia may have lasting effects on the developing brains of young children, new research suggests the threat may also apply to adult brains.
Researchers from Cincinnati Children's Hospital Medical Center report June 5 the Annals of Neurology that testing in laboratory mice shows anesthesia's neurotoxic effects depend on the age of brain neurons – not the age of the animal undergoing anesthesia, as once thought.
Although more research is needed to confirm the study's relevance to humans, ...
Targeting an aspect of Down syndrome
2013-06-05
ANN ARBOR—University of Michigan researchers have determined how a gene that is known to be defective in Down syndrome is regulated and how its dysregulation may lead to neurological defects, providing insights into potential therapeutic approaches to an aspect of the syndrome.
Normally, nerve cells called neurons undergo an intense period of extending and branching of neuronal protrusions around the time of birth. During this period, the neurons produce the proteins of the gene called Down syndrome cell-adhesion molecule, or Dscam, at high levels. After this phase, ...
Young star suggests our sun was a feisty toddler
2013-06-05
If you had a time machine that could take you anywhere in the past, what time would you choose? Most people would probably pick the era of the dinosaurs in hopes of spotting a T. rex. But many astronomers would choose the period, four and a half billion years ago, that our solar system formed.
In lieu of a working time machine, we learn about the birth of our Sun and its planets by studying young stars in our galaxy. New work suggests that our Sun was both active and "feisty" in its infancy, growing in fits and starts while burping out bursts of X-rays.
"By studying ...
Cat's Paw Nebula 'littered' with baby stars
2013-06-05
Most skygazers recognize the Orion Nebula, one of the closest stellar nurseries to Earth. Although it makes for great views in backyard telescopes, the Orion Nebula is far from the most prolific star-forming region in our galaxy. That distinction may go to one of the more dramatic stellar nurseries like the Cat's Paw Nebula, otherwise known as NGC 6334, which is experiencing a "baby boom."
"NGC 6334 is forming stars at a more rapid pace than Orion - so rapidly that it appears to be undergoing what might be called a burst of star formation," said lead author Sarah Willis ...
NJIT professor uses Petri nets to solve automation problems in manufacturing in IEEE journal
2013-06-05
An expert in robotics and automation problems, especially those involving manufacturing systems, NJIT Distinguished Professor and IEEE Fellow Mengchu Zhou will have two articles published in the upcoming proceedings of the 2013 IEEE International Conference on Robotics and Automation. Both papers were recently presented at this conference.
"Novel Method to Simplify Supervisor for AMS Based on Petri Nets and Inequality Analysis" offers a better and more efficient way to help managers control a computer-controlled manufacturing system by using mathematical modeling tools, ...
Discovering 1 reason why swarming evolved offers tantalizing clues on how intelligence developed
2013-06-05
VIDEO:
This video shows typical prey behavior when predators are not confused by multiple prey in their visual field. The prey spread out as much as possible while moving around randomly.
Prey...
Click here for more information.
Many animals – from locusts to fish – live in groups and swarm, but scientists aren't sure why or how this behavior evolved. Now a multidisciplinary team of Michigan State University scientists has used a model system to show for the first time ...
Sleep study finds important gender differences among heart patients
2013-06-05
Many women get too little sleep, despite considerable evidence showing the importance of sleep to overall health. Now a new UC San Francisco study has discovered another reason why inadequate sleep may be harmful, especially to women and their hearts.
The study found that poor sleep, particularly waking too early, appears to play a significant role in raising unhealthy levels of inflammation among women with coronary heart disease. The elevated inflammation affected only women, not men, even when adjusted for medical, lifestyle and socio-demographic differences, the authors ...
Peer pressure tests grade schoolers -- not just adolescents: Research
2013-06-05
COLLEGE PARK, Md. – Peer group influences affect children much earlier than researchers have suspected, finds a new University of Maryland-led study. The researchers say the study provides a wake-up call to parents and educators to look out for undue group influences, cliquishness and biases that might set in early, the researchers say.
The study appears in the May/June 2013 issue of Child Development, and is available online: http://onlinelibrary.wiley.com/doi/10.1111/cdev.12011/abstract
The researchers say their work represents a new line of research – what they ...
Protein block stops vascular damage in diabetes
2013-06-05
Researchers at Lund University in Sweden have discovered how to stop the destructive process that leads to cardiovascular disease in diabetic laboratory animals.
It is well known that high blood sugar levels significantly raise the risk of cardiovascular disease. It is unclear, however, why this happens. An important part of the explanation may be NFAT, a protein activated when blood sugar is raised and which starts a chain of events that damage the blood vessels and accelerate the development of atherosclerosis.
"We have now shown that it is possible to stop the atherosclerosis ...
New screening technique paves the way for protein drugs from bacteria
2013-06-05
A cheaper, more efficient technique for developing complex protein drugs from bacteria has been developed at the University of Sheffield.
Using the bacterium E. coli, researchers from the University's Faculty of Engineering showed it was possible to vastly increase the efficiency of the cells producing specifically modified proteins, as well as improve its performance and stability. The modification is present in over two-thirds of human therapeutic drugs on the market and involves the addition of specific sugar groups to the protein backbone, a process termed glycosylation.
Drugs ...
LAST 30 PRESS RELEASES:
Scientists track evolution of pumice rafts after 2021 underwater eruption in Japan
The future of geothermal for reliable clean energy
Study shows end-of-life cancer care lacking for Medicare patients
Scented wax melts may not be as safe for indoor air as initially thought, study finds
Underwater mics and machine learning aid right whale conservation
Solving the case of the missing platinum
Glass fertilizer beads could be a sustained nutrient delivery system
Biobased lignin gels offer sustainable alternative for hair conditioning
Perovskite solar cells: Thermal stresses are the key to long-term stability
University of Houston professors named senior members of the National Academy of Inventors
Unraveling the mystery of the missing blue whale calves
UTA partnership boosts biomanufacturing in North Texas
Kennesaw State researcher earns American Heart Association award for innovative study on heart disease diagnostics
Self-imaging of structured light in new dimensions
Study highlights successes of Virginia’s oyster restoration efforts
Optimism can encourage healthy habits
Precision therapy with microbubbles
LLM-based web application scanner recognizes tasks and workflows
Pattern of compounds in blood may indicate severity of gestational hypertension and preeclampsia
How does innovation policy respond to the challenges of a changing world?
What happens when a diet targets ultra-processed foods?
University of Vaasa, Finland, conducts research on utilizing buildings as energy sources
Stealth virus: Zika virus builds tunnels to covertly infect cells of the placenta
The rising tide of sand mining: a growing threat to marine life
Contemporary patterns of end-of-life care among Medicare beneficiaries with advanced cancer
Digital screen time and nearsightedness
Postoperative weight loss after anti-obesity medications and revision risk after joint replacement
New ACS research finds low uptake of supportive care at the end-of-life for patients with advanced cancer
New frailty measurement tool could help identify vulnerable older adults in epic
Co-prescribed stimulants, opioids linked to higher opioid doses
[Press-News.org] Scientists map the wiring of the biological clockThe connections make the clock precise but also let it adjust to changes in day/night cycles