Math technique de-clutters cancer-cell data, revealing tumor evolution, treatment leads
2013-06-07
(Press-News.org) Cold Spring Harbor, NY -- In our daily lives, clutter is something that gets in our way, something that makes it harder for us to accomplish things. For doctors and scientists trying to parse mountains of raw biological data, clutter is more than a nuisance; it can stand in the way of figuring out how best to treat someone who is very sick.
Using increasingly cheap and rapid methods to read the billions of "letters" that comprise human genomes – including the genomes of individual cells sampled from cancerous tumors -- scientists are generating far more data than they can easily interpret.
Today, two scientists from Cold Spring Harbor Laboratory (CSHL) publish a mathematical method of simplifying and interpreting genome data bearing evidence of mutations, such as those that characterize specific cancers. Not only is the technique highly accurate; it has immediate utility in efforts to parse tumor cells, in order to determine a patient's prognosis and the best approach to treatment.
CSHL Assistant Professor Alexander Krasnitz, who developed the new technique jointly with American Cancer Society Professor Michael Wigler, explains that it reduces the burden of interpretation by identifying what he and Wigler call COREs, an acronym for "cores of recurrent events."
krasznitz_diagram2013 When genome sequence data from 100 cells sampled from a single human tumor is analyzed, and the mathematical algorithm devised by Krasnitz and Wigler is applied, the rich structure of the data emerges. This is a "heat map" in which each horizontal row contains data from 1 of the 100 sampled cells; and each vertical column contains information about the presence (black) or absence (no mark) of a "CORE." Each core represents a place in the genome of a particular cell that either has amplified DNA (blue bar, top) or deleted DNA (red bar, top). From the mass of data underlying these phenomena, signatures of 4 subpopulations of tumor cells now become visible. The four groups and their evolutionary relation is shown along the left vertical axis: about half are "green," and are normal; the red group -- consisting of only 4 cells of the 100, turns out, genetically, to be the most mutated and dangerous subgroup in this tumor.
Consider the example of a cancerous breast tumor. Central to the CORE concept is what Krasnitz and Wigler refer to as "intervals." An example of an interval would be a segment of DNA that is missing in the genetic sequence of one or more cells sampled from the tumor. Tumor cells are often missing DNA that should normally be present; or conversely, they often have genome intervals in which the normal DNA sequence is amplified – it appears in multiple copies. Such deletions and amplifications are called copy-number variations, or CNVs.
"In cancer," says Krasnitz, "we find intervals in the genome that are hit again and again. You might see this in many cells coming from a single patient's tumor; or you may see these repeating patterns in cells sampled from many patients with a similar cancer type."
In either case, if you superimpose the location of each "hit" – whether a deletion or an amplification of DNA -- against a map of the full human genome, "you end up with these wobbly pile-ups, stacks of 'hits' at the same locations in the genome."
Due to the vagaries of collecting genome data and a certain amount of small-scale variation in the precise boundaries of the deleted or amplified DNA intervals, the stacks don't line up straight; as Krasnitz says, they look "wobbly." This makes them very hard to accurately interpret.
The CORE method he and Wigler describe in a paper appearing in Proceedings of the National Academy of Sciences "is a mathematical way of cleaning up this mess and untangling these stacks of data, which often overlap." When data from 100 cells from a single tumor are analyzed, for example, and the mathematical algorithm devised by Krasnitz and Wigler is applied, the regularity of the stacks is revealed, and the rich structure of the data emerges.
In the example of analyzing 100 cells from one tumor, the net result is that populations and subpopulations of cancer cells can be distinguished; and if the cancer has already become metastatic, CORE will be useful in discerning the relations among cancer cell subpopulations in various parts of the body. Such analysis is a potentially valuable guide to prognosis and can also help to make important treatment decisions.
INFORMATION:
"Target inference from collections of genomic intervals" appears online today ahead of print in Proceedings of the National Academy of Sciences. The authors are: Alexander Krasnitz, Guoli Sun, Peter Andrews and Michael Wigler. The paper can be obtained online at: http://www.pnas.org/content/early/recent
About Cold Spring Harbor Laboratory
Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit http://www.cshl.edu.
END
ELSE PRESS RELEASES FROM THIS DATE:
2013-06-07
Remora fish, with a sucking disc on top of their heads, have been the stuff of legend. They often attach themselves to the hulls of boats and in ancient times were thought to purposely slow the boat down. While that is a misunderstanding, something else not well understood was the origins of the fish's odd sucking disc. Scientists at the Smithsonian Institution and London's Natural History Museum, however, have solved that mystery proving that the disc is actually a greatly modified dorsal fin. The research is published in the Journal of Morphology.
The world's eight ...
2013-06-07
(Lebanon, NH, 6/5/13) — Through genetic engineering of laboratory models, researchers at Dartmouth-Hitchcock Norris Cotton Cancer Center have uncovered a vulnerability in the way cancer cells diverge from normal regenerating cells that may help treat children with leukemia as reported in the journal PNAS on June 3, 2013. Dartmouth researchers are trying to understand the key pathways that distinguish how a normal blood cell grows and divides compared to the altered growth that occurs in leukemia. In addition to the treatment of leukemia, the work has relevance for expanding ...
2013-06-07
CHAMPAIGN, Ill. — Researchers have found that a type of predatory sea slug that usually isn't picky when it comes to what it eats has more complex cognitive abilities than previously thought, allowing it to learn the warning cues of dangerous prey and thereby avoid them in the future.
The research appears in the Journal of Experimental Biology.
Pleurobranchaea californica is a deep-water species of sea slug found off the west coast of the United States. It has a relatively simple neural circuitry and set of behaviors. It is a generalist feeder, meaning, as University ...
2013-06-07
CINCINNATI – As modern medical advances help more children with complex conditions live longer, a new study shows a significant number suffer from complications caused by medical devices that are also necessary for their survival.
Researchers report their findings online June 7 in the Journal of Hospital Medicine. Study authors say their research underscores the continued need to improve care for this growing population of children by enhancing medical device safety practices and ensuring device design is suitable or adaptable for pediatric patients.
"Medicine and pediatrics ...
2013-06-07
New research has found that routine screening using a non-invasive test that analyzes fetal DNA in a pregnant woman's blood can accurately detect Down's syndrome and other genetic fetal abnormalities in the first trimester. Published early online in Ultrasound in Obstetrics & Gynecology, the results suggest that the test is superior to currently available screening strategies and could reshape standards in prenatal testing.
Current screening for Down's syndrome, or trisomy 21, and other trisomy conditions includes a combined test done between the 11th and 13th weeks ...
2013-06-07
Philadelphia, PA, June 7, 2013 – The average 5-year survival for colorectal cancer (CRC) is less than 10% if metastasis occurs, but can reach 90% if detected early. A new non-invasive test has been developed that measures methylation of the SDC2 gene in tissues and blood sera. This test detected 87% of all stages of colorectal cancer cases (sensitivity) without significant difference between early and advanced stages, while correctly identifying 95% of disease-free patients (specificity). The results are published in the July issue of The Journal of Molecular Diagnostics.
According ...
2013-06-07
VIDEO:
This is what happens when the essential gene Umbrea is removed from fruit fly cells: cell death. A group of molecular biologists, including assistant professor Barbara Mellone at UConn's College...
Click here for more information.
Researchers from UConn and other institutions in the U.S. and abroad have shown how a relatively young gene can acquire a new function and become essential to an organism's life.
Using a combination of techniques, including phylogenetics, ...
2013-06-06
Greenwood, SC (June 5, 2013) - Researchers at the JC Self Research Institute of the Greenwood Genetic Center (GGC), along with collaborators from Biolog, Inc. in California, have reported an important discovery in the understanding of autism which was published this week in Molecular Autism.
The study, led by GGC's Director of Research, Charles Schwartz, PhD and Staff Scientist, Luigi Boccuto, MD, found that individuals with autism spectrum disorders (ASDs) showed significantly decreased metabolism of the amino acid L-tryptophan when compared to both typical controls ...
2013-06-06
In animals that reproduce by internal fertilization, as humans do, you'd think a penis would be an organ you couldn't really do without, evolutionarily speaking. Surprisingly, though, most birds do exactly that, and now researchers reporting in the Cell Press journal Current Biology on June 6 have figured out where, developmentally speaking, birds' penises have gone.
It turns out that land fowl, which have only rudimentary penises as adults, have normally developing penises as early embryos. Later in development, however, the birds turn on a genetic program that leads ...
2013-06-06
VIDEO:
When male superb lyrebirds sing, they often move their bodies to the music in a choreographed way, say researchers who report their findings in the Cell Press journal Current Biology...
Click here for more information.
When male superb lyrebirds sing, they often move their bodies to the music in a choreographed way, say researchers who report their findings in the Cell Press journal Current Biology on June 6. The findings add to evidence from human cultures around ...
LAST 30 PRESS RELEASES:
[Press-News.org] Math technique de-clutters cancer-cell data, revealing tumor evolution, treatment leads