(Press-News.org) Most of the matter in the universe may be made out of particles that possess an unusual, donut-shaped electromagnetic field called an anapole.
This proposal, which endows dark matter particles with a rare form of electromagnetism, has been strengthened by a detailed analysis performed by a pair of theoretical physicists at Vanderbilt University: Professor Robert Scherrer and post-doctoral fellow Chiu Man Ho. An article about the research was published online last month by the journal Physics Letters B.
"There are a great many different theories about the nature of dark matter. What I like about this theory is its simplicity, uniqueness and the fact that it can be tested," said Scherrer.
In the article, titled "Anapole Dark Matter," the physicists propose that dark matter, an invisible form of matter that makes up 85 percent of the all the matter in the universe, may be made out of a type of basic particle called the Majorana fermion. The particle's existence was predicted in the 1930's but has stubbornly resisted detection.
A number of physicists have suggested that dark matter is made from Majorana particles, but Scherrer and Ho have performed detailed calculations that demonstrate that these particles are uniquely suited to possess a rare, donut-shaped type of electromagnetic field called an anapole. This field gives them properties that differ from those of particles that possess the more common fields possessing two poles (north and south, positive and negative) and explains why they are so difficult to detect.
"Most models for dark matter assume that it interacts through exotic forces that we do not encounter in everyday life. Anapole dark matter makes use of ordinary electromagnetism that you learned about in school – the same force that makes magnets stick to your refrigerator or makes a balloon rubbed on your hair stick to the ceiling," said Scherrer. "Further, the model makes very specific predictions about the rate at which it should show up in the vast dark matter detectors that are buried underground all over the world. These predictions show that soon the existence of anapole dark matter should either be discovered or ruled out by these experiments."
Fermions are particles like the electron and quark, which are the building blocks of matter. Their existence was predicted by Paul Dirac in 1928. Ten years later, shortly before he disappeared mysteriously at sea, Italian physicist Ettore Majorana produced a variation of Dirac's formulation that predicts the existence of an electrically neutral fermion. Since then, physicists have been searching for Majorana fermions. The primary candidate has been the neutrino, but scientists have been unable to determine the basic nature of this elusive particle.
The existence of dark matter was also first proposed in the 1930's to explain discrepancies in the rotational rate of galactic clusters. Subsequently, astronomers have discovered that the rate that stars rotate around individual galaxies is similarly out of sync. Detailed observations have shown that stars far from the center of galaxies are moving at much higher velocities than can be explained by the amount of visible matter that the galaxies contain. Assuming that they contain a large amount of invisible "dark" matter is the most straightforward way to explain these discrepancies.
Scientists hypothesize that dark matter cannot be seen in telescopes because it does not interact very strongly with light and other electromagnetic radiation. In fact, astronomical observations have basically ruled out the possibility that dark matter particles carry electrical charges.
More recently, though, several physicists have examined dark matter particles that don't carry electrical charges, but have electric or magnetic dipoles. The only problem is that even these more complicated models are ruled out for Majorana particles. That is one of the reasons that Ho and Scherrer took a closer look at dark matter with an anapole magnetic moment.
"Although Majorana fermions are electrically neutral, fundamental symmetries of nature forbid them from acquiring any electromagnetic properties except the anapole," Ho said. The existence of a magnetic anapole was predicted by the Soviet physicist Yakov Zel'dovich in 1958. Since then it has been observed in the magnetic structure of the nuclei of cesium-133 and ytterbium-174 atoms.
Particles with familiar electrical and magnetic dipoles, interact with electromagnetic fields even when they are stationary. Particles with anapole fields don't. They must be moving before they interact and the faster they move the stronger the interaction. As a result, anapole particles would have been have been much more interactive during the early days of the universe and would have become less and less interactive as the universe expanded and cooled.
The anapole dark matter particles suggested by Ho and Scherrer would annihilate in the early universe just like other proposed dark matter particles, and the left-over particles from the process would form the dark matter we see today. But because dark matter is moving so much more slowly at the present day, and because the anapole interaction depends on how fast it moves, these particles would have escaped detection so far, but only just barely.
INFORMATION:
The research was funded in part by Department of Energy grant DE-FG05-85ER40226.
Simple theory may explain mysterious dark matter
2013-06-11
ELSE PRESS RELEASES FROM THIS DATE:
Reduced brain volume in kids with low birth-weight tied to academic struggles
2013-06-11
EUGENE, Ore. -- (June 10, 2013) -- An analysis of recent data from magnetic resonance imaging (MRI) of 97 adolescents who were part of study begun with very low birth weight babies born in 1982-1986 in a Cleveland neonatal intensive care unit has tied smaller brain volumes to poor academic achievement.
More than half of the babies that weighed less than 1.66 pounds and more than 30 percent of those less than 3.31 pounds at birth later had academic deficits. (Less than 1.66 pounds is considered extremely low birth weight; less than 3.31 pounds is labeled very low birth ...
New study proposes solution to long-running debate as to how stable the Earth system is
2013-06-11
Researchers at the University of Southampton have proposed an answer to the long-running debate as to how stable the Earth system is.
The Earth, with its core-driven magnetic field, oceans of liquid water, dynamic climate and abundant life is arguably the most complex system in the known Universe. Life arose on Earth over three and a half billion years ago and it would appear that despite planetary scale calamities such as the impacts of massive meteorites, runaway climate change and increases in brightness of the Sun, it has continued to grow, reproduce and evolve ever ...
Lifespan-extending drug given late in life reverses age-related heart disease in mice
2013-06-11
Elderly mice suffering from age-related heart disease saw a significant improvement in cardiac function after being treated with the FDA-approved drug rapamycin for just three months. The research, led by a team of scientists at the Buck Institute for Research on Aging, shows how rapamycin impacts mammalian tissues, providing functional insights and possible benefits for a drug that has been shown to extend the lifespan of mice as much as 14 percent. There are implications for human health in the research appearing online in Aging Cell: heart disease is the leading cause ...
Earthquake swarms; marine Ediacaran fossil traces; Alca obsidian; Mammoth Mountain
2013-06-11
Boulder, Colo., USA – Studies in this latest batch of GEOLOGY postings cover tiny Ediacara organisms, CO2 gas following seismic swarms, the growth of Mount Everest, methane seeps, the remarkably modern character of Cretaceous seawater composition, geodynamic models of the assembly of Rodinia and Gondwana, and whether subduction zones are invading the Atlantic. Other studies cover the Danube Basin, the Andes, the Central Range of Taiwan; and the seafloor near Costa Rica. All article abstracts are open access online.
Highlights are provided below. GEOLOGY articles published ...
Weapons testing data determines brain makes new neurons into adulthood
2013-06-11
LIVERMORE, Calif. -- Using data derived from nuclear weapons testing of the 1950s and '60s, Lawrence Livermore scientists have found that a small portion of the human brain involved in memory makes new neurons well into adulthood.
The research may have profound impacts on human behavior and mental health. The study supports the importance of investigating the therapeutic potential of applying adult neurogenesis to the treatment of age-related cognitive disorders.
Neurogenesis is the process by which neurons are generated from neural stem and progenitor cells, and, until ...
Biodegradable implant may lessen side effects of radiation to treat prostate cancer
2013-06-11
Several years ago, Virginia Commonwealth University Massey Cancer Center became the first center in the United States to test an Israeli-invented device designed to increase the space between the prostate and the rectum in prostate cancer patients undergoing radiation therapy. Now, results from the international Phase I clinical trial show that the device has the potential to significantly reduce rectal injury, a side effect caused by unwanted radiation exposure that can leave men with compromised bowel function following treatment.
Results of the 27-patient prospective ...
How does inbreeding avoidance evolve in plants?
2013-06-11
Inbreeding is generally deleterious, even in flowering plants. Since inbreeding raises the risk that bad copies of a gene will be expressed, inbred progeny suffer from reduced viability.
Many flowering plants are able to recognize and reject their own pollen, thereby preventing inbreeding despite the plants' hermaphroditic nature. This mechanism is a complex trait that involves the interaction of a gene that tags the pollen with an identifier molecule, and a gene that produces a molecule capable of detecting pollen produced by the same plant.
Evolutionary biologists ...
Biofuels will play integral role in California's energy future, says new EBI study
2013-06-11
Biofuels developed from plant biomass and purpose-grown crops can substantially move California toward its ambitious energy goals, a new report says, but only through the wise allocation of feedstocks and the success of energy efficiency measures throughout the state.
That's the conclusion of "California Energy Future: the Potential for Biofuels," a report of the California Council on Science and Technology (CCST) co-authored by Energy Biosciences Institute scientists Heather Youngs and Chris Somerville. The study is one of seven produced by the CCST's California's Energy ...
Hairpin turn: Micro-RNA plays role in wood formation
2013-06-11
For more than a decade, scientists have suspected that hairpin-shaped chains of micro-RNA regulate wood formation inside plant cells. Now, scientists at NC State University have found the first example and mapped out key relationships that control the process.
The research, published online in Proceedings of the National Academy of Sciences the week of June 10, describes how one strand of micro-RNA reduced by more than 20 percent the formation of lignin, which gives wood its strength. Understanding how to reduce lignin at the cellular level could lead to advances in ...
Study finds obese mothers program their kids to be fat, but legacy can be overturned
2013-06-11
Scientists in Sydney, Australia, have discovered that obesity and type 2 diabetes in pregnancy can program children to develop metabolic problems later in life. The good news is, this legacy is not set in stone—if children of obese mothers are careful about what they eat, it can be overturned. The study, carried out by scientists at the Victor Chang Cardiac Research Institute, is published in the June edition of the journal Epigenetics. By using genetically identical mice as a model, the team investigated the effects of having a mother with obesity and type 2 diabetes. ...