(Press-News.org) Washington, D.C.—-A team of researchers has discovered evidence that an extrasolar planet may be forming quite far from its star—- about twice the distance Pluto is from our Sun. The planet lies inside a dusty, gaseous disk around a small red dwarf TW Hydrae, which is only about 55 percent of the mass of the Sun. The discovery adds to the ever-increasing variety of planetary systems in the Milky Way. The research is published in the Astrophysical Journal.*
This dusty protoplanetary disk is the closest one to us, some 176 light-years away in the constellation Hydra. The astronomers made Hubble Space Telescope observations over a wide range of wavelengths from visible to near infrared and modeled the color and structure of the disk in a way that has not been done before. They found a deficit of disk material, or partial gap, at about 80 astronomical units (AU) (1 AU is the Earth/Sun distance). Their models indicate that the depression is about 20 AUs wide, just slightly wider than necessary for a planet-opening gap and consistent with a planet of between 6 and 28 Earth masses. The feature is seen at all wavelengths indicating it is structural and not a local compositional difference. The team believes the evidence is strong for planet formation causing the gap.
"TW Hydrae is between 5 and 10 million years old, and should be in the final throes of planet formation before its disk dissipates," remarked coauthor Alycia Weinberger of the Carnegie Institution and principal investigator of the observations. "It is surprising to find a planet only 5 to 10% of Jupiter's mass forming so far out since planets should form faster closer in. In all planet formation scenarios, it's difficult to make a low-mass planet far away from a low mass star."
The goal of these observations was to understand not only whether planets have formed, but also what conditions can result in planet formation and what chemical constituents are available for new planets. Models by coauthor Hannah Jang-Condell, a former Carnegie postdoctoral researcher, showed that the disk was brighter than expected, which indicates that very small dust grains are being lifted high above the midplane. This is surprising because observations with radio telescopes have previously shown that the disk contains dust that has conglomerated into pebbles.
Weinberger designed the observations to be able to detect large water ice grains in the surface layer of the disk. These grains weren't seen, which probably means that they have grown and sunk to the midplane of the disk where they can aggregate into water-rich planets.
Planet formation far away from a small parent star is at odds with the conventional planet-making dogma. Under the most accepted scenario, planets form over tens of millions of years from the slow accretion of dust, rocks, and gas. That happens most easily close to the central star, where orbital timescales are short. Even under a disk instability scenario, in which planets can collapse quickly from the disk, it's not clear such a low mass planet could form.
Carnegie astrophysicist Alan Boss, who works on disk instability models, said "If the mass of this suspected planet is as low as it seems to be, this presents a real puzzle. Theory would say that it cannot exist!"
Lead author of the study, John Debes of the Space Science Telescope Institute and also a former Carnegie postdoctoral researcher remarked, "Typically, you need pebbles before you can form a planet. So, if there is a planet in the gap and there is no dust larger than a grain of sand farther out, we have provided a challenge for traditional planet formation models."
###
*Authors on the study are John Debes, Hannah Jang-Condell, Alycia Weinberger, Aki Roberge, and Glenn Schneider. Support for this work was provided by NASA through the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under contract NAS 5-26555. Debes, Jang-Condell and Roberge are all former Carnegie postdoctoral Fellows.
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.
Exoplanet formation surprise
2013-06-14
ELSE PRESS RELEASES FROM THIS DATE:
Farmworkers feel the heat even when they leave the fields
2013-06-14
WINSTON-SALEM, N.C. – June 13, 2013 – Hot weather may be the work environment for the 1.4 million farmworkers in the United States who harvest crops, but new research shows that these workers continue to experience excessive heat and humidity even after leaving the fields.
Wake Forest Baptist Medical Center researchers conducted a study to evaluate the heat indexes in migrant farmworker housing and found that a majority of the workers don't get a break from the heat when they're off the clock.
Lead author Sara A. Quandt, Ph.D., a professor of epidemiology and prevention ...
Depression in postmenopausal women may increase diabetes and cardiovascular disease risk
2013-06-14
WORCESTER — Postmenopausal women who use antidepressant medication or suffer from depression might be more likely to have a higher body mass index (BMI), larger waist circumference and inflammation—all associated with increased risk for diabetes and cardiovascular disease, according to a study led by University of Massachusetts Medical School investigator Yunsheng Ma, PhD, MD, MPH, and published in the June 13 issue of the American Journal of Public Health.
The UMass Medical School study investigated whether elevated depressive symptoms and antidepressant use are associated ...
Black locust showing promise for biomass potential
2013-06-14
URBANA, Ill. – Researchers from the Energy Biosciences Institute at the University of Illinois, evaluating the biomass potential of woody crops, are taking a closer look at the black locust (Robinia pseudoacacia), which showed a higher yield and a faster harvest time than other woody plant species that they evaluated, said U of I associate professor of crop sciences Gary Kling.
"For now the only thing you can do with it is use it for direct combustion," Kling said. "But if it becomes a major crop other researchers could start working on the process of how to break it ...
Tobacco laws for youth may reduce adult smoking
2013-06-14
States that want to reduce rates of adult smoking may consider implementing stringent tobacco restrictions on teens, suggests a new study by researchers at Washington University School of Medicine in St. Louis.
The researchers discovered that states with more restrictive limits on teens purchasing tobacco also have lower adult smoking rates, especially among women. And compared with states with less restrictive limits, they also tend to have fewer adult heavy smokers.
The study is published online June 13 in the American Journal of Public Health.
"In most states for ...
Dangerous strains of E. coli may linger longer in water than benign counterparts, study finds
2013-06-14
BUFFALO, N.Y. — A toxin dangerous to humans may help E. coli fend off aquatic predators, enabling strains of E. coli that produce the toxin to survive longer in lake water than benign counterparts, a new study finds.
Researchers from the University at Buffalo and Mercyhurst University reported these results online June 7 in the journal Applied and Environmental Microbiology.
"The take-home lesson is that E. coli that produce Shiga toxin persisted longer in recreational water than E. coli that don't produce this toxin," said UB Professor of Biological Sciences Gerald ...
Nanoparticle opens the door to clean-energy alternatives
2013-06-14
Cheaper clean-energy technologies could be made possible thanks to a new discovery. Research team members led by Raymond Schaak, a professor of chemistry at Penn State University, have found that an important chemical reaction that generates hydrogen from water is effectively triggered -- or catalyzed -- by a nanoparticle composed of nickel and phosphorus, two inexpensive elements that are abundant on Earth. The results of the research will be published in the Journal of the American Chemical Society.
Schaak explained that the purpose of the nickel phosphide nanoparticle ...
Monell-led research identifies scent of melanoma
2013-06-14
PHILADELPHIA (June 13, 2013) -- According to new research from the Monell Center and collaborating institutions, odors from human skin cells can be used to identify melanoma, the deadliest form of skin cancer. In addition to detecting a unique odor signature associated with melanoma cells, the researchers also demonstrated that a nanotechnology-based sensor could reliably differentiate melanoma cells from normal skin cells. The findings suggest that non-invasive odor analysis may be a valuable technique in the detection and early diagnosis of human melanoma.
Melanoma ...
Autonomous energy-scavenging micro devices will test water quality, monitor bridges, more
2013-06-14
Out in the wilds or anywhere off the grid, sophisticated instruments small enough to fit in a shirt pocket will one day scavenge power from sunlight, body heat, or other sources to monitor water quality or bridge safety, enabling analysis in the field rather than bringing samples and data back to the lab.
Researchers at the University of Waterloo in Ontario are using optics and photonics in their quest to "bring the lab to the sample," said lead researcher Vassili Karanassios of the Department of Chemistry and of the university's Institute for Nanotechnology (WIN). A ...
Unzipped nanotubes unlock potential for batteries
2013-06-14
HOUSTON – (June 13, 2013) – Researchers at Rice University have come up with a new way to boost the efficiency of the ubiquitous lithium ion (LI) battery by employing ribbons of graphene that start as carbon nanotubes.
Proof-of-concept anodes -- the part of the battery that stores lithium ions -- built with graphene nanoribbons (GNRs) and tin oxide showed an initial capacity better than the theoretical capacity of tin oxide alone, according to Rice chemist James Tour. After 50 charge-discharge cycles, the test units retained a capacity that was still more than double ...
Major hurdle cleared to diabetes transplants
2013-06-14
Researchers at Washington University School of Medicine in St. Louis have identified a way to trigger reproduction in the laboratory of clusters of human cells that make insulin, potentially removing a significant obstacle to transplanting the cells as a treatment for patients with type 1 diabetes.
Efforts to make this treatment possible have been limited by a dearth of insulin-producing beta cells that can be removed from donors after death, and by the stubborn refusal of human beta cells to proliferate in the laboratory after harvesting.
The new technique uses a cell ...