(Press-News.org) VIDEO:
Researchers from Princeton University and Germany's Max Planck Institute for Dynamics and Self-Organization report the first purely physical experimental evidence that chimera states can occur naturally within any process that...
Click here for more information.
Systems such as a beating heart or a power grid that depend on the synchronized movement of their parts could fall prey to an invisible and chaotic tug-of-war known as a "chimera." Sharing its name with the fire-breathing, zoologically patchy creature of Greek mythology, a chimera state arises among identical, rhythmically moving components — known as oscillators — when a few of those parts spontaneously fall out of sync while the rest remain synchronized.
Whether chimera states exist in the real world has remained an imminent question since their discovery in theoretical studies 10 years ago. Now, researchers from Princeton University and Germany's Max Planck Institute for Dynamics and Self-Organization (MPIDS) report the first purely physical experimental evidence that chimera states can occur naturally and under a broad range of circumstances.
They report in the journal Proceedings of the National Academy of Sciences that a surprisingly simple experiment demonstrated that chimera states naturally lay at the crossroads of two types of synchronized motion — in-phase and antiphase. Imagine two groups of pendulums that swing in the same direction at the same time — that's in-phase. Under antiphase, the pendulums move at the same pace, but one group goes left as the other goes right.
Furthermore, the researchers found through mathematical models that the phenomenon can strike any process that relies on self-emergent synchronization, or the natural tendency of components to fall into the same rhythm. A range of things that swing, blink or pulsate share this quality, including clock pendulums, lightning bugs and heart cells.
Shashi Thutupalli, co-corresponding author on the paper and a postdoctoral research fellow in Princeton's Lewis-Sigler Institute for Integrative Genomics, explained that chimera states have recently been the topic of a lot of study and numerous computer models explore them. Nonetheless, there was a lack of experimental investigations into how they occur, and whether chimera states need specific conditions in order to crop up, Thutupalli said.
"We hope this will prompt scientists to look for chimeras where they haven't before," Thutupalli said. "Our experiment captures elements such as friction and inertia, the direct analogs of which occur in a wide range of natural systems. There may be many processes that are chimera-like. We just don't recognize them and so don't know how to control them."
Daniel Abrams, a Northwestern University assistant professor of engineering sciences and applied mathematics, said that these findings are significant for researchers exploring the applications and natural occurrences of chimera states. Abrams, who is one of the first researchers to identify chimera states in theory, is familiar with the Princeton-MPIDS research but had no role in it.
Possible systems susceptible to a chimera state include electric-power grids, which rely on synchronized generators to avoid breaks in power transmission, Abrams said. Also, certain patterns of intense heart-tissue contraction — known as "spiral waves" — in certain types of heart attacks have been observed in simulations of chimera states. Forms of chimera state may also be connected to large-scale synchronization patterns of neurons that have been observed during seizures, Abrams said.
"A better understanding of the behavior of coupled oscillators could be useful for understanding a variety of biological activity," Abrams said.
Yet, two obstacles have long hindered the physical observation of a chimera state, Abrams said. On one hand, before the state's theoretical discovery, scientists didn't think that a hybrid of synchrony and asynchrony could exist — chimera states were dismissed as an anomaly, Abrams said. Secondly, it was not clear until this latest work that they could exist in a simple system.
"The big point of the paper — that chimera states can occur in simple systems that have not been explicitly designed to find them — is an important one," Abrams said. "Before this work, the only experimental examples of chimera states were in fairly complicated systems with computers in the loop. Here the authors have constructed an extremely simple mechanical system that shows a chimera state."
The Princeton-MPIDS researchers developed an apparatus made of two swings, each fitted with 15 metronomes. A spring connected the swings so that they moved together. The research was largely conducted at MPIDS, and included first and co-corresponding author Erik Martens, now a postdoctoral researcher at the Technical University of Denmark; Antoine Fourrière, a postdoctoral researcher at Max Planck; and Oskar Hallatschek, now an assistant professor of physics at the University of California-Berkeley.
The device was inspired by the work of Dutch physicist Christiaan Huygens, who in 1665 observed that the pendulums of two clocks suspended on a beam would automatically synchronize their motion, Martens said. "We drew inspiration from this classic experiment, but we took it quite a few steps further," he said. "This allowed us to find a system based merely on swings, springs and gears that displayed these mysterious chimera states."
Similarly, as the swings on the researchers' apparatus were set in motion, the metronomes would start moving willy-nilly then eventually move together. If the spring connecting the swings was taut the metronomes on both swings moved with in-phase synchrony, i.e., left and right in unison. If the spring was loose, antiphase movement developed so that metronomes on one swing moved left as the others moved right, yet always in time.
A chimera state arose when the spring's tensity was in between. The symmetry spontaneously broke so that the metronomes on one swing stayed in lockstep with one another while the metronomes on the other swing moved erratically. The researchers used mechanics equations to develop a mathematical model and simulate various scenarios under which a chimera state arose.
###
The paper, "Chimera states in mechanical oscillator networks," was published online June 12 by the Proceedings of the National Academy of Sciences. The work was partially supported by a grant from the Human Frontier Science Program.
Is there an invisible tug-of-war behind bad hearts and power outages?
2013-06-17
ELSE PRESS RELEASES FROM THIS DATE:
Medical assessment in the blink of an eye
2013-06-17
Have you ever thought that you knew something about the world in the blink of an eye? This restaurant is not the right place for dinner. That person could be The One. It turns out that radiologists can do this with mammograms, the x-ray images used for breast cancer screening. Cytologists, who screen micrographic images of cervical cells to detect cervical cancer, have a similar ability. A new study, published in Springer's journal Psychonomic Bulletin & Review, takes a closer look at the skill these specialists have.
There are many routes to making snap judgments (not ...
New alternative to surgery lets doctors remove suspicious polyps, keep colon intact
2013-06-17
Millions of people each year have polyps successfully removed during colonoscopies. But when a suspicious polyp is bigger than a marble or in a hard-to-reach location, patients are referred for surgery to remove a portion of their colon — even if doctors aren't sure whether the polyp is cancerous or not.
Since only 15 percent of all polyps turn out to be malignant, many patients are unnecessarily subjected to the risks of this major surgery. Now there is an alternative.
A UCLA team of surgeons and gastroenterologists has been performing a new, minimally invasive ...
Bullfrogs may help spread deadly amphibian fungus, but also die from it
2013-06-17
CORVALLIS, Ore. – Amphibian populations are declining worldwide and a major cause is a deadly fungus thought to be spread by bullfrogs, but a two-year study shows they can also die from this pathogen, contrary to suggestions that bullfrogs are a tolerant carrier host that just spreads the disease.
When researchers raised the frogs from eggs in controlled experimental conditions, they found at least one strain of this pathogen, Batrachochytrium dendrobatidis, also called Bd or a chytrid fungus, can be fatal to year-old juveniles. However, bullfrogs were resistant to one ...
Study identifies protein essential for normal heart function
2013-06-17
A study by researchers at Skaggs School of Pharmacy and Pharmaceutical Sciences and the Department of Pharmacology at the University of California, San Diego, shows that a protein called MCL-1, which promotes cell survival, is essential for normal heart function.
Their study, published in the June 15 online issue of the journal Genes & Development, found that deletion of the gene encoding MCL-1 in adult mouse hearts led to rapid heart failure within two weeks, and death within a month.
MCL-1 (myeloid cell leukemia-1) is an anti-apoptotic protein, meaning that it prevents ...
'Chemical architects' build materials with potential applications in drug delivery and gas storage
2013-06-17
PITTSBURGH—Home remodelers understand the concept of improving original foundations with more modern elements. Using this same approach—but with chemistry—researchers in the University of Pittsburgh's Kenneth P. Dietrich School of Arts and Sciences have designed a family of materials that could make drug delivery, gas storage, and gas transport more efficient and at a lower cost. The findings were reported in the latest issue of the Journal of the American Chemical Society (JACS).
The recent work builds upon Pitt Associate Professor of Chemistry Nathaniel Rosi's earlier ...
Rare genomic mutations found in 10 families with early-onset, familial Alzheimer's disease
2013-06-17
Although a family history of Alzheimer's disease is a primary risk factor for the devastating neurological disorder, mutations in only three genes – the amyloid precursor protein and presenilins 1 and 2 – have been established as causative for inherited, early-onset Alzheimer's, accounting for about half of such cases. Now Massachusetts General Hospital (MGH) researchers have discovered a type of mutation known as copy-number variants (CNVs) – deletions, duplications, or rearrangements of human genomic DNA – in affected members of 10 families with early-onset Alzheimer's. ...
Obese male mice father offspring with higher levels of body fat
2013-06-17
SAN FRANCISCO (June 16, 2013)—Male mice who were fed a high-fat diet and became obese were more likely to father offspring who also had higher levels of body fat, a new Ohio University study finds.
The effect was observed primarily in male offspring, despite their consumption of a low-fat diet, scientists reported today at the annual meeting of The Endocrine Society in San Francisco, Calif.
"We've identified a number of traits that may affect metabolism and behavior of offspring dependent on the pre-conception diet of the father," said Felicia Nowak, an associate professor ...
'Chase and run' cell movement mechanism explains process of metastasis
2013-06-17
A mechanism that cells use to group together and move around the body – called 'chase and run' - has been described for the first time by scientists at UCL.
Published in Nature Cell Biology, the new study focuses on the process that occurs when cancer cells interact with healthy cells in order to migrate around the body during metastasis. Scientists know that cancer cells recruit healthy cells and use them to travel long distances, but how this process takes place and how it could be controlled to design new therapies against cancer remains unknown.
Now, using embryonic ...
Advances in genetic sequencing diagnose Paralympic hopeful's rare condition
2013-06-17
National Paracycling Champion Tom Staniford has an extremely rare condition which, until now, has puzzled his doctors. He is unable to store fat under his skin – yet has type 2 diabetes – and suffered hearing loss as a child. Now, thanks to advances in genome sequencing, an international research team led by the University of Exeter Medical School has identified Tom's condition and pinpointed the single genetic mutation that causes it.
As well as allowing a better understanding of Tom's condition, the discovery may have implications for his bid to participate in the ...
Noble gases hitch a ride on hydrous minerals
2013-06-17
PROVIDENCE, R.I. [Brown University] — The noble gases get their collective moniker from their tendency toward snobbishness. The six elements in the family, which includes helium and neon, don't normally bond with other elements and they don't dissolve into minerals the way other gases do. But now, geochemists from Brown University have found a mineral structure with which the nobles deign to fraternize.
Researchers led by Colin Jackson, a graduate student in geological sciences, have found noble gases to be highly soluble in amphibole, a mineral commonly found in oceanic ...