(Press-News.org) A new study challenges the orthodoxy of microbiology that in response to environmental changes, bacterial genes will boost production of needed proteins and decrease production of those that aren't. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) found that for bacteria in the laboratory there was little evidence of adaptive genetic response. In fact, most bacterial genes appear to be regulated by signals unrelated to their function.
"Gene regulation in bacteria is usually described as an adaptive response to an environmental change so that genes are expressed only when they are required, but we've shown that in the laboratory gene regulation is often maladaptive," says Adam Arkin, a systems and synthetic biologist and director of Berkeley Lab's Physical Biosciences Division. "From our results, we propose that most bacterial genes are under indirect control, which means their expression is a response to signals not directly related to their function, and that their regulatory mechanisms perform poorly in the artificial conditions of a laboratory."
Arkin is the corresponding author along with Morgan Price, also with Berkeley Lab's Physical Biosciences Division, of a paper describing this research in the journal Molecular Systems Biology. The paper is titled "Indirect and suboptimal control of gene expression is widespread in bacteria." Other co-authors were Adam Deutschbauer, Jeffrey Skerker, Kelly Wetmore, Troy Ruths, Jordan Mar, Jennifer Kuehl and Wenjun Shao.
In the study of microbes, conventional scientific wisdom holds that bacterial genes are adaptively regulated to allow the microbe to respond to changing metabolic conditions or to environmental stresses. The idea is that expressing proteins provides a fitness benefit at a cost of cellular resources, therefore, under a cost-benefit model of optimal gene expression, proteins are up-regulated as required, and those that would add no benefit or be detrimental are down-regulated.
"Based on earlier work, we had this idea that bacterial regulation might not be as adaptive as most people seemed to think but we had no direct evidence," says Price. "Once we had the technology, developed by Adam Deutschbauer, to measure fitness benefits on a large scale in bacteria, we were of course curious as to whether expression and fitness would be correlated."
To test their ideas, Arkin, Price and Deutschbauer undertook an expression/fitness study of the MR-1 strain of Shewanella oneidensis, a bacterium that can reduce toxic heavy metals under both aerobic and anaerobic conditions.
"S. oneidensis MR-1 is important to DOE's mission because of its potential applications in bioenergy and bioremediation," says Deutschbauer. "Also, we were able to leverage an existing whole-genome mutant collection in S. oneidensis MR-1, which Adam Arkin's research group had previously developed as part of a separate project."
The Berkeley Lab researchers collected genome-wide expression and fitness data for 3,247 of S. oneidensis MR-1's protein-coding genes through several generations of the bacteria cultured under 15 different environments, including a variety of carbon sources, both aerobic and anaerobic conditions, and with and without the presence of toxic compounds. They also collected gene expression data for wild-type bacteria cultured under the same conditions. Overall, only five-percent of the examined S. oneidensis MR-1 genes showed adaptive regulation, whereas 48-percent showed suboptimal, non-adaptive regulation. Furthermore, 24-percent of the genes were highly expressed under conditions in which they were actually detrimental to fitness.
"If you simply plot how much a gene changes in expression in a given condition versus how much worse the cell grows without the gene in that condition over a large number of conditions, you find very little of the correlation you would expect under the traditional view of adaptive regulation," says Arkin. "While we suspect adaptive regulation will line up better under more natural conditions, the fact that so few genes responded as expected in the laboratory indicates that whatever the natural response is, it probably will not fit the classical all-benefit- and-no-cost model."
Similar expression/fitness analyses were performed on Zymomonas mobilis ZM4, an ethanol-producer, and Desulfovibrio alaskensis G20, a sulfate-reducer, with similar results to the S. oneidensis MR-1 study. The findings suggest that non-adaptive regulation of bacterial genes is widespread at least in laboratory settings.
"Bacteria have far more operons than sensors so they're probably not well-designed to provide the feedback that the optimal regulation of most genes would require," Price says. "Also, bacterial gene regulatory systems have evolved under very different conditions than those being tested in the laboratory. If the utility of a gene's activity correlates with a functionally unrelated signal, then regulation by that signal will be selected for in the wild but probably not be maintained in artificial conditions. In fact, when we put the bacteria into an artificial situation, the regulatory system often becomes downright maladaptive."
Price also believes that for maybe 10-percent of bacterial genes, there is little selective pressure to regulate their activity.
"These genes are always on at a constant low level so they are always beneficial or at least not very harmful," he says. "There's not much to gain from regulating their activity."
Arkin, Price and Deutschbauer plan to extend their studies to approximately 100 additional types of bacterium. They also plan to carry out future studies under more naturalistic conditions.
"In addition to needing to test these systems under more natural conditions, there are a number of theories to explain the regulation of bacterial genes that we need to test," says Arkin. "For example, it may be that transient gene expression changes are more indicative of response to environmental change than the long-term expression/fitness factors we measured, or there is more anticipatory control than we were able to test for in this study."
INFORMATION:
This research was carried out through ENIGMA, a multi-institutional consortium funded by DOE through its Scientific Focus Area grant program. ENIGMA stands for Ecosystems and Networks Integrated with Genes and Molecular Assemblies. Its mission is to advance our understanding of microbial biology and the impact of microbial communities on their ecosystems.
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.
DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.
Expressly unfit for the laboratory
Berkeley Lab researchers find little correlation between microbial gene expression and environmental conditions in the laboratory
2013-06-20
ELSE PRESS RELEASES FROM THIS DATE:
Scientists date prehistoric bacterial invasion still present in today's cells
2013-06-20
Long before plants and animals inhabited the earth, when life consisted of single-celled organisms afloat in a planet-wide sea, bacteria invaded these organisms and took up permanent residence. One bacterium eventually became the mitochondria that today power all plant and animal cells; another became the chloroplast that turns sunlight into energy in green plants.
A new analysis by two University of California, Berkeley, graduate students more precisely pinpoints when these life-changing invasions occurred, placing the origin of photosynthesis in plants hundreds of millions ...
Genetics of cervical cancer raise concern about antiviral therapy in some cases
2013-06-20
CORVALLIS, Ore. – A new understanding of the genetic process that can lead to cervical cancer may help improve diagnosis of potentially dangerous lesions for some women, and also raises a warning flag about the use of anti-viral therapies in certain cases – suggesting they could actually trigger the cancer they are trying to cure.
The analysis provides a clearer picture of the chromosomal and genetic changes that take place as the human papillomavirus sometimes leads to chronic infection and, in less than 1 percent of cases, to cervical cancer. It is the first to identify ...
Metamorphosis of moon's water ice explained
2013-06-20
DURHAM, N.H. –- Using data gathered by NASA's Lunar Reconnaissance Orbiter (LRO) mission, scientists believe they have solved a mystery from one of the solar system's coldest regions—a permanently shadowed crater on the moon. They have explained how energetic particles penetrating lunar soil can create molecular hydrogen from water ice. The finding provides insight into how radiation can change the chemistry of water ice throughout the solar system.
Space scientists from the University of New Hampshire and NASA's Goddard Space Flight Center have published their results ...
UMass Amherst researchers develop powerful new technique to study protein function
2013-06-20
AMHERST, Mass. – In the cover story for the journal Genetics this month, neurobiologist Dan Chase and colleagues at the University of Massachusetts Amherst describe a new experimental technique they developed that will allow scientists to study the function of individual proteins in individual cell types in a living organism.
The advance should allow deeper insights into protein function, Chase says, "because we can only get a true understanding of what that single protein does when we isolate its function in a living organism. There was no tool currently available to ...
Study shows probiotic Lactobacillus reuteri NCIMB 30242 significantly increased vitamin D levels
2013-06-20
Montreal, June 19, 2013 – A study published in the Journal of Clinical Endocrinology & Metabolism is the first report of an oral probiotic supplement significantly increasing circulating vitamin D levels in the blood.
The lead author on the study, Mitchell Jones, MD, PhD, received the Early Career Investigator Poster Presentation Prize from the New York Academy of Sciences and the Sackler Institute for Nutrition Science at last week's Probiotics, Prebiotics, and the Host Microbiome: The Science of Translation conference in New York City(1).
The study(2) , a post-hoc ...
Fate of the heart: Researchers track cellular events leading to cardiac regeneration
2013-06-20
In a study published in the June 19 online edition of the journal Nature, a scientific team led by researchers from the University of California, San Diego School of Medicine visually monitored the dynamic cellular events that take place when cardiac regeneration occurs in zebrafish after cardiac ventricular injury. Their findings provide evidence that various cell lines in the heart are more plastic, or capable of transformation into new cell types, than previously thought.
More importantly, the research reveals a novel potential source of cells for regenerating damaged ...
Neurosurgery publishes findings of 3 important studies in June issue
2013-06-20
Philadelphia, Pa. (June 19, 2013) – The results of three important studies have been published in the June issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
One study indicates that continuous "machine learning" using artificial neural networks (ANNs) may improve the ability to predict survival in patients with advanced brain cancers. Another study in the June Neurosurgery supports increased use of stereotactic biopsy for obtaining samples of brainstem ...
U of M researchers identify risk and protective factors for youth involved in bullying
2013-06-20
(MINNEAPOLIS/ST. PAUL) June 19, 2013 – New research out of the University of Minnesota identifies significant risk factors for suicidal behavior in youth being bullied, but also identifies protective factors for the same group of children.
The article, "Suicidal Thinking and Behavior Among Youth Involved in Verbal and Social Bullying: Risk and Protective Factors" is being published in a special supplemental issue of the Journal of Adolescent Health. The supplement identifies bullying as a clear public health issue, calling for more preventative research and action.
Authors ...
A new model -- and possible treatment -- for staph bone infections
2013-06-20
Osteomyelitis – a debilitating bone infection most frequently caused by Staphylococcus aureus ("staph") bacteria – is particularly challenging to treat.
Now, Vanderbilt microbiologist Eric Skaar, Ph.D., MPH, and colleagues have identified a staph-killing compound that may be an effective treatment for osteomyelitis, and they have developed a new mouse model that will be useful for testing this compound and for generating additional therapeutic strategies.
James Cassat, M.D., Ph.D., a fellow in Pediatric Infectious Diseases who is interested in improving treatments for ...
Dietary fructose causes liver damage in animal model, study finds
2013-06-20
WINSTON-SALEM, N.C. – June 19, 2013 – The role of dietary fructose in the development of obesity and fatty liver diseases remains controversial, with previous studies indicating that the problems resulted from fructose and a diet too high in calories.
However, a new study conducted in an animal model at Wake Forest Baptist Medical Center showed that fructose rapidly caused liver damage even without weight gain. The researchers found that over the six-week study period liver damage more than doubled in the animals fed a high-fructose diet as compared to those in the control ...
LAST 30 PRESS RELEASES:
Younger men have higher risk for mortality and cardiovascular disease for type 2 diabetes than type 1 diabetes; whereas for women type 1 diabetes outcomes are worse at all ages
Freeze-framing the cellular world to capture a fleeting moment of cellular activity
Computer hardware advance solves complex optimization problems
SOX2: a key player in prostate cancer progression and treatment resistance
Unlocking the potential of the non-coding genome for precision medicine
Chitinase-3-like protein 1: a novel biomarker for liver disease diagnosis and management
The Journal of Nuclear Medicine Ahead-of-Print Tip Sheet: August 22, 2025
Charisma Virtual Social Coaching named a finalist for Global Innovation Award
From the atmosphere to the abyss: Iron's role in Earth's climate history
US oil and gas air pollution causes unequal health impacts
Scientists reveal how microbes collaborate to consume potent greenhouse gas
UMass Amherst kinesiologist receives $2 million ‘outstanding researcher’ award from NIH
Wildfire peer review report for land Brandenburg, Germany, is now online
Wired by nature: Precision molecules for tomorrow's electronics
New study finds hidden body fat is linked to faster heart ageing
How a gift card could help speed up Alzheimer’s clinical research
Depression and anxiety symptoms in adults displaced by natural disasters
Cardiovascular health at the intersection of race and gender in Medicare fee for service
World’s first observation of the transverse Thomson effect
Powerful nodes for quantum networks
Mapping fat: How microfluidics and mass spectrometry reveal lipid landscapes in tiny worms
ATOX1 promotes hepatocellular carcinoma carcinogenesis via activation of the c-Myb/PI3K/AKT signaling pathway
Colibactin-producing E. coli linked to higher colorectal cancer risk in FAP patients
Animal protein not linked to higher mortality risk, study finds
Satellite insights into eutrophication trends on the Qinghai–Tibet plateau
Researchers develop an innovative method for large-scale analysis of metabolites in biological samples
Asteroid Bennu is a time capsule of materials bearing witness to its origin and transformation over billions of years
New AI model can help extend life and increase safety of electric vehicle batteries
Wildfires can raise local death rate by 67%, shows study on 2023 Hawaiʻi fires
Yogurt and hot spring bathing show a promising combination for gut health
[Press-News.org] Expressly unfit for the laboratoryBerkeley Lab researchers find little correlation between microbial gene expression and environmental conditions in the laboratory