(Press-News.org) PROVIDENCE, R.I. [Brown University] — Millions of times on a spring day there is a dramatic biomolecular tango where the flower, rather than adorning a dancer's teeth, is the performer. In this dance, the female pistil leads, the male pollen tubes follow, and at the finish, the tubes explode and die. A new paper in Current Biology describes the genetically prescribed dance steps of the pollen tube and how their expression destines the tube for self-sacrifice, allowing flowering plants to reproduce.
High school biology leaves off with this: In normal pollination, sperm-carrying pollen grains land on the pistil's tip, or stigma, and grow tubes down its style to reach the ovaries in the ovules at the pistil's base. Once the tubes reach their destination, they burst open and release their sperm to fertilize each of the two ovaries in every ovule.
In his lab at Brown University, Mark Johnson, associate professor of biology, studies the true complexity of intercellular communications that conduct this process with exquisite precision.
Among the fundamental biology questions at play in the sex lives of flowers, for example, are how cells recognize each other, know what to do, and know when to do it. Last year, for instance, Johnson and his research group showed how, for all the hundreds of pollen tubes that grow through the pistil, each ovule receives exactly two fertile sperm.
"As we drill into the details, it's a really great system for understanding how cellular identity is established and read by another cell," Johnson said. "The moves in the dance between the pollen and the pistil are a back-and-forth [of signals] as the pollen tube is growing. It's quite a dynamic system that happens over the course of a few hours."
Making the male listen
In the new paper, Johnson's group, led by third-year graduate student Alexander Leydon, sought to discover what convinces the male pollen tubes to stop growing and burst when they reach the ovule. Scientists have begun to understand the female's commands, but not the male's ability to listen.
What they knew from a prior study is that the gene expression in pollen tubes that had grown through a pistil was much different than that of pollen tubes grown in the lab. Leydon's first step, therefore, was to see which regulators of gene expression, or transcription factors, were at work in pistil-grown pollen tubes but not in the lab-grown ones. First they found one called MYB120 and through genomic analysis found two close associates: MYB101 and MYB97.
He tagged these with fluorescing proteins and found under the microscope that these transcription factors accumulated in the nuclei of the pollen tubes as they grew in the pistil.
Having placed them at the scene, Leydon then decided to see what happens when they aren't. He grew some normal arabadopsis plants, some in which a mutation disabled only one of the transcription factors, and other ones in which the genes for all three transcription factors were disabled. Then he took the pollen from each to pollinate normal flowers. The pollen tubes from all three plants reliably made it to ovules, but in 70 percent of the ovules encountered by the triple mutants, the pollen tubes didn't stop growing and then burst. Instead they kept growing, coiling, and remaining intact.
"The pollen tube gets to the right place, which you'd think is the hardest part," Johnson said. "But once it gets there it's unable to hear the message from the female to stop growing and burst."
From there the team looked for which pollen tube-expressed genes were being regulated by the MYB transcription factors. In pollen tubes that had grown through pistils, they found 11 that were grossly underexpressed in the mutated pollen tubes, compared to normal ones.
Finally, they looked at what those genes do. They encode a variety of tasks, but one in particular got Leydon's attention because it is responsible for the secretion of a protein called a thionin.
"For the thionin, I was especially excited because they have been described as being able to essentially burst open other cells," Leydon said. "That would be something that would be able to bind to a membrane and cause a pore to form."
In other words, expressing that gene could be pushing the pollen tube's self-destruct mechanism.
"This is not just a dialogue but a dialogue that ends in death," Leydon said. "It's a really well-controlled cell death situation."
Agricultural applications?
Future work, Johnson said, will include tracking down the relevant genes more fully and determining whether thionin is indeed the pollen tube buster that the genes and their MYB-related expression seem to indicate.
The work may also have implications beyond basic science, Johnson said.
Agronomists sometimes try to cross-breed species, such as barley and wheat, in hopes of creating new crops. That can be done if the different species are closely related and share the same number of chromosomes, but fertilization often fails at the pollen tube burst-and-release step.
Among crop plants, pollination means food.
"Understanding this molecular back-and-forth at all the different levels and stages will be useful to either engineer the process or introduce genetic diversity that will allow the reproductive process to be efficient even in difficult environmental conditions," Johnson said.
INFORMATION:
In addition to Leydon and Johnson, other Brown authors are Kristin Beale, Karolina Woroniecka, Elizabeth Castner, Jefferson Chen, and Casie Horgan. Ravishankar Palanivelu of the University of Arizona is a co-author. Chen, Castner, and Woroniecka were Brown undergraduatess who joined the project as Brown–Howard Hughes Medical Institute Summer Scholars.
The National Science Foundation funded the study with grant IOS-1021917. The researchers used the Brown University Genomics Core Facility in their work.
Pistil leads pollen in life-and-death dance
2013-06-20
ELSE PRESS RELEASES FROM THIS DATE:
That grocery store cabbage is alive
2013-06-20
The fruits and vegetables we buy in the grocery store are actually still alive, and it matters to them what time of day it is. The discovery, reported on June 20 in Current Biology, a Cell Press publication, suggests that the way we store our produce could have real consequences for its nutritional value and for our health.
"Vegetables and fruits, even after harvest, can respond to light signals and consequently change their biology in ways that may affect health value and insect resistance," says Janet Braam of Rice University. "Perhaps we should be storing our vegetables ...
Animal study shows promising path to prevent epilepsy
2013-06-20
DURHAM, N.C. -- Duke Medicine researchers have identified a receptor in the nervous system that may be key to preventing epilepsy following a prolonged period of seizures.
Their findings from studies in mice, published online in the journal Neuron on June 20, 2013, provide a molecular target for developing drugs to prevent the onset of epilepsy, not just manage the disease's symptoms.
"Unfortunately, there are no preventive therapies for any common disorder of the human nervous system – Alzheimer's, Parkinson's, schizophrenia, epilepsy – with the exception of blood ...
Bugs provide new insights into relationships between animals and bacteria
2013-06-20
Scientists have come closer to untangling a unique and intricate relationship between animals and bacteria, providing potential insights into the complex association between humans and the microbes we rely on for our health.
Mealybugs, scaly insects that feed on plant juices, have a rare tag-team relationship with bacteria that help the bugs turn plant sap into usable nutrients. Similar to Russian nesting dolls, the bugs house two kinds of bacteria, with one bacterium called Moranella endobia living inside another called Tremblaya princeps. This three-tiered system has ...
2-week treatment found to prevent epilepsy in mice gives hope for drug development
2013-06-20
Temporal lobe epilepsy, the most common form of epilepsy, is characterized by recurrent seizures throughout life and often behavioral abnormalities, with devastating impacts on patients and their families. Unfortunately, the condition is often not responsive to anticonvulsants. Now scientists report online June 20 in the Cell Press journal Neuron that targeting a particular signaling pathway in mice can prevent the development of temporal lobe epilepsy with just two weeks of treatment, offering hope that researchers will be able to develop effective drugs to mitigate recurrent ...
Pluripotent cells from pancreatic cancer cells first human model of cancer's progression
2013-06-20
PHILADELPHIA - Pancreatic cancer carries a dismal prognosis. According to the National Cancer Institute, the overall five-year relative survival for 2003-2009 was 6 percent.
Still, researchers and clinicians don't have a non-invasive way to even detect early cells that portent later disease. 'There's no PSA test for pancreatic cancer,' they say, and that's one of the main reasons why pancreatic cancer is detected so late in its course.
They have been searching for a human-cell model of early-disease progression. Now, Perelman School of Medicine, University of Pennsylvania ...
Dusty surprise around giant black hole
2013-06-20
Over the last twenty years, astronomers have found that almost all galaxies have a huge black hole at their centre. Some of these black holes are growing by drawing in matter from their surroundings, creating in the process the most energetic objects in the Universe: active galactic nuclei (AGN). The central regions of these brilliant powerhouses are ringed by doughnuts of cosmic dust [1] dragged from the surrounding space, similar to how water forms a small whirlpool around the plughole of a sink. It was thought that most of the strong infrared radiation coming from AGN ...
Scientists discover key signaling pathway that makes young neurons connect
2013-06-20
LA JOLLA, CA – June 20, 2013 – Neuroscientists at The Scripps Research Institute (TSRI) have filled in a significant gap in the scientific understanding of how neurons mature, pointing to a better understanding of some developmental brain disorders.
In the new study, the researchers identified a molecular program that controls an essential step in the fast-growing brains of young mammals. The researchers found that this signaling pathway spurs the growth of neuronal output connections by a mechanism called "mitochondrial capture," which has never been described before.
"Mutations ...
Lumosity's big data provides new approach to understanding human cognition
2013-06-20
Lumosity, the leading brain training company, today announced a new web-based, big data methodology for conducting human cognitive performance research. Lumosity's research platform, the Human Cognition Project, contains the world's largest and continuously growing dataset of human cognitive performance, which currently includes more than 40 million people who have been tracked for up to 6 years. The study, published today in the open-access journal Frontiers in Neuroscience, examined how Lumosity's dataset can provide insights into the lifestyle correlates of cognitive ...
The link between circadian rhythms and aging
2013-06-20
CAMBRIDGE, MA -- Human sleeping and waking patterns are largely governed by an internal circadian clock that corresponds closely with the 24-hour cycle of light and darkness. This circadian clock also controls other body functions, such as metabolism and temperature regulation.
Studies in animals have found that when that rhythm gets thrown off, health problems including obesity and metabolic disorders such as diabetes can arise. Studies of people who work night shifts have also revealed an increased susceptibility to diabetes.
A new study from MIT shows that a gene ...
Researchers identify key player in the genesis of human intestinal immunity
2013-06-20
CHAPEL HILL – The trillions of harmful bacteria that populate the human gut represent a continuous threat to our health. Proper intestinal immune function creates a protective barrier between us and the extensive microbial ecosystem in our intestines. Now, researchers at the University of North Carolina School of Medicine have identified the structures that serve as the foundation for the development of the human intestinal immune system.
Specialized immune structures in the intestines, referred to as gut-associated lymphoid tissues, or GALT, are critical components ...