(Press-News.org) A new study that calculates the influence of cloud behavior on climate doubles the number of potentially habitable planets orbiting red dwarfs, the most common type of stars in the universe. This finding means that in the Milky Way galaxy alone, 60 billion planets may be orbiting red dwarf stars in the habitable zone.
Researchers at the University of Chicago and Northwestern University based their study, which appears in Astrophysical Journal Letters, on rigorous computer simulations of cloud behavior on alien planets. This cloud behavior dramatically expanded the habitable zone of red dwarfs, which are much smaller and fainter than stars like the sun.
Current data from NASA's Kepler Mission, a space observatory searching for Earth-like planets orbiting other stars, suggest there is approximately one Earth-size planet in the habitable zone of each red dwarf. The UChicago-Northwestern study now doubles that number.
"Most of the planets in the Milky Way orbit red dwarfs," said Nicolas Cowan, a postdoctoral fellow at Northwestern's Center for Interdisciplinary Exploration and Research in Astrophysics. "A thermostat that makes such planets more clement means we don't have to look as far to find a habitable planet."
Cowan is one of three co-authors of the study, as are UChicago's Dorian Abbot and Jun Yang. The trio also provide astronomers with a means of verifying their conclusions with the James Webb Space Telescope, scheduled for launch in 2018.
The formula for calculating the habitable zone of alien planets—where they can orbit their star while still maintaining liquid water at their surface—has remained much the same for decades. But the formula largely neglects clouds, which exert a major climatic influence.
"Clouds cause warming, and they cause cooling on Earth," said Abbot, an assistant professor in geophysical sciences at UChicago. "They reflect sunlight to cool things off, and they absorb infrared radiation from the surface to make a greenhouse effect. That's part of what keeps the planet warm enough to sustain life."
A planet orbiting a star like the sun would have to complete an orbit approximately once a year to be far enough away to maintain water on its surface. "If you're orbiting around a low mass or dwarf star, you have to orbit about once a month, once every two months to receive the same amount of sunlight that we receive from the sun," Cowan said.
Tightly orbiting planets
Planets in such a tight orbit would eventually become tidally locked with their sun. They would always keep the same side facing the sun, like the moon does toward Earth. Calculations of the UChicago-Northwestern team indicate that the star-facing side of the planet would experience vigorous convection and highly reflective clouds at a point that astronomers call the sub-stellar region. At that location the sun always sits directly overhead, at high noon.
The team's three-dimensional global calculations determined for the first time the effect of water clouds on the inner edge of the habitable zone. The simulations are similar to the global climate simulations that scientists use to predict Earth climate. These required several months of processing, running mostly on a cluster of 216 networked computers at UChicago. Previous attempts to simulate the inner edge of exoplanet habitable zones were one-dimensional. They mostly neglected clouds, focusing instead on charting how temperature decreases with altitude.
"There's no way you can do clouds properly in one-dimension," Cowan said. "But in a three-dimensional model, you're actually simulating the way air moves and the way moisture moves through the entire atmosphere of the planet."
These new simulations show that if there is any surface water on the planet, water clouds result. The simulations further show that cloud behavior has a significant cooling effect on the inner portion of the habitable zone, enabling planets to sustain water on their surfaces much closer to their sun.
Astronomers observing with the James Webb Telescope will be able to test the validity of these findings by measuring the temperature of the planet at different points in its orbit. If a tidally locked exoplanet lacks significant cloud cover, astronomers will measure the highest temperatures when the dayside of the exoplanet is facing the telescope, which occurs when the planet is on the far side of its star. Once the planet comes back around to show its dark side to the telescope, temperatures would reach their lowest point.
But if highly reflective clouds dominate the dayside of the exoplanet, they will block a lot of infrared radiation from the surface, said Yang, a postdoctoral scientist in geophysical sciences at UChicago. In that situation "you would measure the coldest temperatures when the planet is on the opposite side, and you would measure the warmest temperatures when you are looking at the night side, because there you are actually looking at the surface rather than these high clouds," Yang said.
Earth-observing satellites have documented this effect. "If you look at Brazil or Indonesia with an infrared telescope from space, it can look cold, and that's because you're seeing the cloud deck," Cowan said. "The cloud deck is at high altitude, and it's extremely cold up there."
If the James Webb Telescope detects this signal from an exoplanet, Abbot noted, "it's almost definitely from clouds, and it's a confirmation that you do have surface liquid water."
INFORMATION:
Citation: "Stabilizing Cloud Feedback Doubles Frequency of Red Dwarf Habitable Planets," by Jun Yang, Nicolas B. Cowan and Dorian S. Abbot, Astrophysical Journal Letters, Vol. 771, No. 2, July 10, 2013.
Funding: Alfred P. Sloan Research Foundation.
Media Contacts:
Steve Koppes
773-702-8366
skoppes@uchicago.edu
Megan Fellman
847-491-3115
fellman@northwestern.edu
Cloud behavior expands habitable zone of alien planets
2013-07-01
ELSE PRESS RELEASES FROM THIS DATE:
Lack of immune cell receptor impairs clearance of amyloid beta protein from the brain
2013-07-01
Identification of a protein that appears to play an important role in the immune system's removal of amyloid beta (A-beta) protein from the brain could lead to a new treatment strategy for Alzheimer's disease. The report from researchers at Massachusetts General Hospital (MGH) has been published online in Nature Communications.
"We identified a receptor protein that mediates clearance from the brain of soluble A-beta by cells of the innate immune system," says Joseph El Khoury, MD, of the Center for Immunology and Inflammatory Diseases in the MGH Division of Infectious ...
GW researcher discovers new regulatory autism gene
2013-07-01
WASHINGTON -- A new study by Valerie Hu, Ph.D., professor of biochemistry and molecular medicine at the George Washington University (GW) School of Medicine and Health Sciences (SMHS), reports that RORA, a novel candidate gene for autism discovered by her group in a 2010 study, regulates a large number of other genes associated with autism.
"We are focusing on this gene, in part, because this gene can act as a master regulator of other genes," said Hu, whose study was published in the journal Molecular Autism.
"Called nuclear hormone receptors, they are capable of ...
Nerve cells can work in different ways with same result
2013-07-01
Epilepsy, irregular heartbeats and other conditions caused by malfunctions in the body's nerve cells, also known as neurons, can be difficult to treat. The problem is that one medicine may help some patients but not others. Doctors' ability to predict which drugs will work with individual patients may be influenced by recent University of Missouri research that found seemingly identical neurons can behave the same even though they are built differently under the surface.
"To paraphrase Leo Tolstoy, 'every unhappy nervous system is unhappy in its own way,' especially ...
Caterpillars attracted to plant SOS
2013-07-01
Plants that emit an airborne distress signal in response to herbivory may actually attract more enemies, according to a new study published in the open-access journal Frontiers in Plant Science .
A team of researchers from Switzerland found that the odor released by maize plants under attack by insects attract not only parasitic wasps, which prey on herbivorous insects, but also caterpillars of the Egyptian cotton leafworm moth Spodoptera littoralis, a species that feeds on maize leaves.
When damaged, many plants release hydrocarbons called volatile organic compounds, ...
UNC murine study predicts cancer drug responsiveness in human tumors
2013-07-01
CHAPEL HILL, N.C. - It's a GEMM of a system. Genetically engineered mouse models that is. Using them allows scientists to study cancer in a way that more naturally mimics how human tumors exist within the complex environment of the body.
UNC scientists used GEMMs to develop biomarkers for challenging molecular subtypes of human breast cancer, those for which there are fewer targets and therapies. Their work helps to further establish genetically engineered mouse models as predictors of human response to therapy.
The molecular subtypes of breast cancer that the UNC ...
Climbing the social ladder is strongly influenced by your grandparents' class
2013-07-01
WASHINGTON, DC, July 1, 2013 — For the first time, a study has suggested that the position of grandparents in the British class system has a direct effect on which class their grandchildren belong to. It has long been accepted that parents' social standing has a strong influence on children's education, job prospects, and earning power. However, this study by researchers from the University of Oxford and Durham University shows that even when the influence of parents has been taken into account, the odds of grandchildren going into professional or managerial occupations ...
Tallying the wins and losses of policy
2013-07-01
In the past decade, China as sunk some impressive numbers to preserve its forests, but until now there hasn't been much data to give a true picture of how it has simultaneously affected both the people and the environment.
Michigan State University, partnered with the Chinese Academy of Sciences, has capitalized on their long history of research in the Wolong Nature Reserve to get a complete picture of the environmental and socioeconomic effects of payments for ecosystem services programs.
"Performance and prospects of payments for ecosystem services programs: evidence ...
Tobacco control policies stop people from smoking and save lives
2013-07-01
WASHINGTON — Tobacco control measures put in place in 41 countries between 2007 and 2010 will prevent some 7.4 million premature deaths by 2050, according to a study published in the Bulletin of the World Health Organization today.
The study is one of the first to look at the effect of measures since the World Health Organization Framework Convention on Tobacco Control (WHO FCTC) was established in 2005. Jt demonstrates the success of the WHO FCTC in reducing tobacco use and, thus, saving lives.
"It's a spectacular finding that by implementing these simple tobacco control ...
Observing live gene expression in the body
2013-07-01
Most of our physiological functions fluctuate throughout the day. They are coordinated by a central clock in the brain and by local oscillators, present in virtually every cell. Many molecular gearwheels of this internal clock have been described by Ueli Schibler, professor at the Faculty of Science of the University of Geneva (UNIGE), Switzerland. To study how the central clock synchronizes subordinate oscillators, the researcher's group used a variety of genetic and technological tools developed in collaboration with a team of UNIGE physicians. In this way, the scientists ...
Cancer is a result of a default cellular 'safe mode,' physicist proposes
2013-07-01
With death rates from cancer have remained largely unchanged over the past 60 years, a physicist is trying to shed more light on the disease with a very different theory of its origin that traces cancer back to the dawn of multicellularity more than a billion years ago.
In this month's special issue of Physics World devoted to the "physics of cancer", Paul Davies, principal investigator at Arizona State University's Center for Convergence of Physical Sciences and Cancer Biology, explains his radical new theory.
Davies was brought in to lead the centre in 2009 having ...