(Press-News.org) Electron transfer is a process by which an atom donates an electron to another atom. It is the foundation of all chemical reactions, and is of intense research because of the implications it has for chemistry and biology. When two molecules interact, electron transfer takes place in a few quadrillionths (10-15¬) of a second, or femtoseconds (fsec), meaning that studying this event requires very time-sensitive techniques like ultrafast spectroscopy. However, the transfer itself is often influenced by the solution in which the molecules are studied (e.g. water), and this must be taken into account when such experiments are designed. In a recent Nature Communications paper, EPFL scientists have visualized for the first time how electron transfer takes place in one of the most common solvents, water.
For over twenty years, scientists have been trying to understand how an electron departs from an atom or molecule, travels through space in a solvent, and finally connects to an acceptor atom or molecule. Until now, experimental efforts have not borne much fruit, mostly because of the extremely short time periods involved in electron transfer. The problem is further complicated when we consider that the molecules of the commonest reaction solvent, water, are polar, which means that they respond to electron movement by influencing it. Understanding the real-time impact of the solvent is crucial, because it directly affects the outcome and efficiency of electron-transfer chemical reactions.
Majed Chergui's group at EPFL's Laboratory of Ultrafast Spectroscopy (LSU) employed a world-unique setup in their lab to observe the evolution of electron movement with unprecedented time-resolution. The scientists excited iodide in water with ultraviolet light, causing the ejection of an electron from the iodine atom. Using a technique called ultrafast fluorescence spectroscopy they observed the departure of the electron over different times between 60 fsec and 450 fsec. Previous research has always been limited between 200 fsec – 300 fsec because once the electron exits, other processes take place that shade the longer periods of time – and shorter timepoints have been inaccessible.
The experiment showed that the departure of the electron depends very much on the configuration of the solvent cage around the iodide. In chemistry, a 'solvent cage' refers to the way a solvent's molecules configure around an atom or molecule and 'try to hold it in place'. What the EPFL researchers found was that the polarized water molecules held the excited electron in place for a time, causing some structural re-arrangement of the solvent (water) in the process, while the driving force for electron ejection into the solvent is being reduced. Ultimately, the solvent cage does not prevent electrons from departing, but it slows down their departure stretching their residence time around iodine up to 450 fsec.
The breakthrough study shows how strongly the configuration and re-arrangement of the solvent affects electron departure. "It's not enough to consider only the donor and acceptor of the electron – now you have to consider the solvent in between", says Majed Chergui. "If you are thinking about driving molecules by light into electron transfer processes, this is in a way telling the community 'watch out, don't neglect the solvent – it is a key partner in the game, and the re-arrangement of the solvent is going to determine how efficient your reaction will be.'"
### END
Solving electron transfer
2013-07-02
ELSE PRESS RELEASES FROM THIS DATE:
Irreversible tissue loss seen within 40 days of spinal cord injury
2013-07-02
A spinal cord injury changes the functional state and structure of the spinal cord and the brain. For example, the patients' ability to walk or move their hands can become restricted. How quickly such degenerative changes develop, however, has remained a mystery until now. The assumption was that it took years for patients with a spinal cord injury to also display anatomical changes in the spinal cord and brain above the injury site. For the first time, researchers from the University of Zurich and the Uniklinik Balgrist, along with English colleagues from University College ...
A potentially life-saving protein takes shape
2013-07-02
COLLEGE PARK, MD - A tiny protein called ubiquitin – so named because it is present in every cell of living things as dissimilar as hollyhocks and humans - may hold the key to treatment for a variety of diseases from Parkinson's to diabetes. The protein, found in all eukaryotes (organisms with membranous cells), was considered unimportant when it was described in 1975. But scientists now know ubiquitin takes many different forms and is important in basic cellular processes, from controlling cells' circadian clocks to clearing away the harmful build-up of cells found in ...
UNC researchers discover a gene's key role in building the developing brain's scaffolding
2013-07-02
CHAPEL HILL, N.C. -- Researchers have pinpointed the role of a gene known as Arl13b in guiding the formation and proper placement of neurons in the early stages of brain development. Mutations in the gene could help explain brain malformations often seen in neurodevelopmental disorders.
The research, led by a team at the University of North Carolina School of Medicine, was published June 30 in the journal Nature Neuroscience.
"We wanted to get a better sense of how the cerebral cortex is constructed," said senior study author Eva Anton, PhD, a professor in the Department ...
Gene therapy cures a severe paediatric neurodegenerative disease in animal models
2013-07-02
Sanfilippo Syndrome type A, or Mucopolysaccharidosis type IIIA (MPSIIIA), is a neurodegenerative disease caused by mutations in the gene that encodes the enzyme sulfamidase. Mutations in this gene lead to deficiencies in the production of the enzyme, which is essential for the breakdown of substances known as glycosaminoglicans. If these substances are not broken down, they accumulate in the cells and cause neuroinflammation and organ dysfunction, mainly in the brain, but also in other parts of the body. Children born with this mutation are diagnosed from the age of 4 or ...
GIS scientists discover molecular communication network in human stem cells
2013-07-02
Scientists at A*STAR's Genome Institute of Singapore (GIS) and the Max Planck Institute for Molecular Genetics (MPIMG) in Berlin (Germany) have discovered a molecular network in human embryonic stem cells (hESCs) that integrates cell communication signals to keep the cell in its stem cell state. These findings were reported in the June 2013 issue of Molecular Cell.
Human embryonic stem cells have the remarkable property that they can form all human cell types. Scientists around the world study these cells to be able to use them for medical applications in the future. ...
Fishing in the sea of proteins
2013-07-02
To convert a gene into a protein, a cell first crafts a blueprint out of RNA. One of the main players in this process has been identified by researchers led by Dr. Jessica Jacobs at the Ruhr-Universität Bochum. The team "fished" a large complex of proteins and RNA, which is involved in the so-called splicing, from the chloroplasts of the green alga Chlamydomonas reinhardtii. This cuts non-coding regions out of the messenger RNA, which contains the protein blueprint. "For the first time, we have established the exact composition of an unknown splicing complex of the chloroplasts", ...
Changes in hyaluronan metabolism key in adaptation of keratinocytes to radiation injury
2013-07-02
As the outermost layer of skin, epidermis is crucial in forming a permeability barrier and protection against various environmental agents. Thus, investigating the biology of its most important cell type, the keratinocyte, is key to understanding the effects of solar ultraviolet radiation in skin, and helps design effective means of protection against excessive exposure. It has already previously been shown with both cell culture and in vivo animal models that UV irradiation increases the expression of hyaluronan, which is an important carbohydrate of the extracellular ...
Cadaver study may help clinicians identify patients who can skip ACL reconstruction
2013-07-02
A study by researchers at Hospital for Special Surgery has provided the first evidence that the shape of a person's knee could be a factor in the decision of whether a patient should undergo anterior cruciate ligament (ACL) reconstruction after an ACL tear. The study is published online ahead of print in the Proceedings of the Institution of Mechanical Engineering.
"This is the first study to show that after your ACL is ruptured, the changes in the mechanics of the knee can really be affected by the shape of the knee," said Suzanne Maher, Ph.D., associate director of ...
Fidaxomicin in Clostridium difficile infection: added benefit not proven
2013-07-02
The antibiotic fidaxomicin (trade name: Dificlir) has been approved in Germany since December 2011 for the treatment of adults who have diarrhoea caused by Clostridium difficile. In an early benefit assessment pursuant to the "Act on the Reform of the Market for Medicinal Products" (AMNOG), the German Institute for Quality and Efficiency in Health Care (IQWiG) examined the added benefit of fidaxomicin in comparison with current standard therapy. According to this, there is currently no proof of an added benefit. The manufacturer did not submit any studies on non-severe ...
Abiraterone: Hint of considerable added benefit
2013-07-02
Abiraterone acetate (abiraterone for short, trade name: Zytiga) has been approved in Germany since December 2012 for men with metastatic prostate cancer that is not responsive to hormone blockade, who only have mild symptoms or so far none at all, and in whom chemotherapy is not yet indicated. In an early benefit assessment pursuant to the "Act on the Reform of the Market for Medicinal Products" (AMNOG), the German Institute for Quality and Efficiency in Health Care (IQWiG) examined whether abiraterone offers an added benefit compared with the present standard therapy. ...