(Press-News.org) Physical activity reorganizes the brain so that its response to stress is reduced and anxiety is less likely to interfere with normal brain function, according to a research team based at Princeton University.
The researchers report in the Journal of Neuroscience that when mice allowed to exercise regularly experienced a stressor — exposure to cold water — their brains exhibited a spike in the activity of neurons that shut off excitement in the ventral hippocampus, a brain region shown to regulate anxiety.
These findings potentially resolve a discrepancy in research related to the effect of exercise on the brain — namely that exercise reduces anxiety while also promoting the growth of new neurons in the ventral hippocampus. Because these young neurons are typically more excitable than their more mature counterparts, exercise should result in more anxiety, not less. The Princeton-led researchers, however, found that exercise also strengthens the mechanisms that prevent these brain cells from firing.
The impact of physical activity on the ventral hippocampus specifically has not been deeply explored, said senior author Elizabeth Gould, Princeton's Dorman T. Warren Professor of Psychology. By doing so, members of Gould's laboratory pinpointed brain cells and regions important to anxiety regulation that may help scientists better understand and treat human anxiety disorders, she said.
From an evolutionary standpoint, the research also shows that the brain can be extremely adaptive and tailor its own processes to an organism's lifestyle or surroundings, Gould said. A higher likelihood of anxious behavior may have an adaptive advantage for less physically fit creatures. Anxiety often manifests itself in avoidant behavior and avoiding potentially dangerous situations would increase the likelihood of survival, particularly for those less capable of responding with a "fight or flight" reaction, she said.
"Understanding how the brain regulates anxious behavior gives us potential clues about helping people with anxiety disorders. It also tells us something about how the brain modifies itself to respond optimally to its own environment," said Gould, who also is a professor in the Princeton Neuroscience Institute.
The research was part of the graduate dissertation for first author Timothy Schoenfeld, now a postdoctoral fellow at the National Institute of Mental Health, as well as part of the senior thesis project of co-author Brian Hsueh, now an MD/Ph.D. student at Stanford University. The project also included co-authors Pedro Rada and Pedro Pieruzzini, both from the University of Los Andes in Venezuela.
For the experiments, one group of mice was given unlimited access to a running wheel and a second group had no running wheel. Natural runners, mice will dash up to 4 kilometers (about 2.5 miles) a night when given access to a running wheel, Gould said. After six weeks, the mice were exposed to cold water for a brief period of time.
The brains of active and sedentary mice behaved differently almost as soon as the stressor occurred, an analysis showed. In the neurons of sedentary mice only, the cold water spurred an increase in "immediate early genes," or short-lived genes that are rapidly turned on when a neuron fires. The lack of these genes in the neurons of active mice suggested that their brain cells did not immediately leap into an excited state in response to the stressor.
Instead, the brain in a runner mouse showed every sign of controlling its reaction to an extent not observed in the brain of a sedentary mouse. There was a boost of activity in inhibitory neurons that are known to keep excitable neurons in check. At the same time, neurons in these mice released more of the neurotransmitter gamma-aminobutyric acid, or GABA, which tamps down neural excitement. The protein that packages GABA into little travel pods known as vesicles for release into the synapse also was present in higher amounts in runners.
The anxiety-reducing effect of exercise was canceled out when the researchers blocked the GABA receptor that calms neuron activity in the ventral hippocampus. The researchers used the chemical bicuculine, which is used in medical research to block GABA receptors and simulate the cellular activity underlying epilepsy. In this case, when applied to the ventral hippocampus, the chemical blocked the mollifying effects of GABA in active mice.
INFORMATION:
The paper, "Physical Exercise Prevents Stress-Induced Activation of Granule Neurons and Enhances Local Inhibitory Mechanisms in the Dentate Gyrus," was published in the Journal of Neuroscience. This research was supported by National Institute of Mental Health grant MH091567.
Exercise reorganizes the brain to be more resilient to stress
2013-07-04
ELSE PRESS RELEASES FROM THIS DATE:
Dodging antibiotic side effects
2013-07-04
A team of scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University has discovered why long-term treatment with many common antibiotics can cause harmful side effects—and they have uncovered two easy strategies that could help prevent these dangerous responses. They reported the results in the July 3rd issue of Science Translational Medicine.
"Clinical levels of antibiotics can cause oxidative stress that can lead to damage to DNA, proteins and lipids in human cells, but this effect can be alleviated by antioxidants," said Jim Collins, ...
Newly developed medium may be useful for human health, biofuel production, more
2013-07-04
COLLEGE STATION — Texas A&M University System scientists from the departments of nutrition and food science and poultry science have developed a new medium for the cultivation of beneficial microorganisms called lactobacilli.
A better understanding of lactobacilli metabolism can help improve feed efficiency in animals and combat malnutrition in humans, according to the researchers.
"Lactobacilli are normal residents of the human gastrointestinal and urogenital tracts, where they promote host health and can be taken as probiotics," said Dr. Joseph Sturino, a Texas A&M ...
EARTH: The energy-water nexus: Managing water in an energy-constrained world
2013-07-04
Alexandria, VA – Of all the water on Earth, less than 3 percent is available for human use, and as climates change and populations boom, the strategies used to extract it will become increasingly complex. With increasing demand, policymakers, scientists and leaders must recognize the energy-water nexus. The energy-water nexus describes an interdependent relationship that exists between availability of water resources and the energy required to obtain, distribute and utilize them. The way we manage the delicate relationship between energy and water will have major implications ...
Urine biomarker test can diagnose as well as predict rejection of transplanted kidneys
2013-07-04
VIDEO:
Dr. Manikkam Suthanthiran, the Stanton Griffis Distinguished Professor of Medicine, has developed a non-invasive test to detect whether a kidney transplant may be rejected.
Click here for more information.
NEW YORK (July 4, 2013) -- A breakthrough non-invasive test can detect whether transplanted kidneys are in the process of being rejected, as well as identify patients at risk for rejection weeks to months before they show symptoms, according to a study published in ...
Maintaining immune balance involves an unconventional mechanism of T cell regulation
2013-07-04
New findings from St. Jude Children's Research Hospital reveal an unconventional control mechanism involved in the production of specialized T cells that play a critical role in maintaining immune system balance. The research appears in the current online edition of the scientific journal Nature.
The work focused on white blood cells known as regulatory T cells. These cells are crucial for a balanced immune response. Regulatory T cells suppress other immune system components in order to protect healthy tissue from misguided immune attacks or to prevent runaway inflammation.
St. ...
UF researcher shows hawkmoths use ultrasound to combat bats
2013-07-04
GAINESVILLE, Fla. — For years, pilots flying into combat have jammed enemy radar to get the drop on their opponents. It turns out that moths can do it, too.
A new study co-authored by a University of Florida researcher shows hawkmoths use sonic pulses from their genitals to respond to bats producing the high-frequency sounds, possibly as a self-defense mechanism to jam the echolocation ability of their predators.
Echolocation research may be used to better understand or improve ultrasound as a vital tool in medicine, used for observing prenatal development, measuring ...
Johns Hopkins GI doctors use endoscopy to place transpyloric stent
2013-07-04
Physicians at Johns Hopkins say they are encouraged by early results in three patients of their new treatment for gastroparesis, a condition marked by the failure of the stomach to properly empty its contents into the small intestine. In an article published online today in the journal Endoscopy, they describe how the placement of a small metal stent in the stomach can improve life for people who suffer from severe bouts of nausea, abdominal pain and vomiting that accompany the condition.
John Clarke, M.D., assistant professor of medicine at the Johns Hopkins University ...
Cancer-linked FAM190A gene found to regulate cell division
2013-07-04
Johns Hopkins cancer scientists have discovered that a little-described gene known as FAM190A plays a subtle but critical role in regulating the normal cell division process known as mitosis, and the scientists' research suggests that mutations in the gene may contribute to commonly found chromosomal instability in cancer.
In laboratory studies of cells, investigators found that knocking down expression of FAM190A disrupts mitosis. In three pancreatic cancer-cell lines and a standard human-cell line engineered to be deficient in FAM190A, researchers observed that cells ...
Antifreeze, cheap materials may lead to low-cost solar energy
2013-07-04
CORVALLIS, Ore. – A process combining some comparatively cheap materials and the same antifreeze that keeps an automobile radiator from freezing in cold weather may be the key to making solar cells that cost less and avoid toxic compounds, while further expanding the use of solar energy.
And when perfected, this approach might also cook up the solar cells in a microwave oven similar to the one in most kitchens.
Engineers at Oregon State University have determined that ethylene glycol, commonly used in antifreeze products, can be a low-cost solvent that functions well ...
Fossil insect traces reveal ancient climate, entrapment, and fossilization at La Brea Tar Pits
2013-07-04
LOS ANGELES — The La Brea Tar Pits have stirred the imaginations of scientists and the public alike for over a century. But the amount of time it took for ancient animals to become buried in asphalt after enduring their gruesome deaths has remained a mystery. Recent forensic investigations, led by Anna R. Holden of the Natural History Museum of Los Angeles County (NHM) and colleagues, reveal new insights into fossilization and the prevailing climate at the Rancho La Brea Tar Pits toward the end of the last Ice Age. The paper, entitled "Paleoecological and taphonomic implications ...