PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Clues about autism may come from the gut

2013-07-04
(Press-News.org) Bacterial flora inhabiting the human gut have become one of the hottest topics in biological research. Implicated in a range of important activities including digestion, fine-tuning body weight, regulating immune response, and producing neurotransmitters affect that brain and behavior, these tiny workers form diverse communities. Hundreds of species inhabit the gut, and although most are beneficial, some can be very dangerous.

In new research appearing in the journal PLOS ONE, a team led by Rosa Krajmalnik-Brown, a researcher at Arizona State University's Biodesign Institute, present the first comprehensive bacterial analysis focusing on commensal or beneficial bacteria in children with autism spectrum disorder (ASD).

After publishing earlier research exploring crucial links between intestinal microflora and gastric bypass, Krajmlanik-Brown convinced James Adams— director of the ASU Autism/Asperger's Research Program—that similar high throughput techniques could be used to mine the microbiome of patients with autism. (Previously, Adams had been studying the relationship between the gut microbiome and autism using traditional culturing techniques.)

"One of the reasons we started addressing this topic is the fact that autistic children have a lot of GI problems that can last into adulthood," Krajmalnik-Brown says. "Studies have shown that when we manage these problems, their behavior improves dramatically."

Following up on these tantalizing hints, the group hypothesized the existence of distinctive features in the intestinal microflora found in autistic subjects compared to typical children. The current study confirmed these suspicions, and found that children with autism had significantly fewer types of gut bacteria, probably making them more vulnerable to pathogenic bacteria. Autistic subjects also had significantly lower amounts of three critical bacteria, Prevotella, Coprococcus, and Veillonellaceae.

Krajmalnik-Brown, along with the paper's lead authors Dae-Wook Kang and Jin Gyoon Park, suggest that knowledge gleaned through such research may ultimately be used both as a quantitative e diagnostic tool to pinpoint autism and as a guide to developing effective treatments for ASD-associated GI problems. The work also offers hope for new prevention and treatment methods for ASD itself, which has been on a mysterious and rapid ascent around the world.

A disquieting puzzle

Autism is defined as a spectrum disorder, due to the broad range of symptoms involved and the influence of both genetic and environmental factors, features often confounding efforts at accurate diagnosis. The diseases' prevalence in children exceeds juvenile diabetes, childhood cancer and pediatric AIDS combined.

Controversy surrounds the apparent explosive rise in autism cases. Heightened awareness of autism spectrum disorders and more diligent efforts at diagnosis must account for some of the increase, yet many researchers believe a genuine epidemic is occurring. In addition to hereditary components, Western-style diets and overuse of antibiotics at an early age may be contributing to the problem by lowering the diversity of the gut microflora.

In terms of severe developmental ailments affecting children and young adults, autism is one of the most common, striking about 1 in 50 children. The disorder—often pitiless and perplexing—is characterized by an array of physical and behavioral symptoms including anxiety, depression, extreme rigidity, poor social functioning and an overall lack of independence.

To date, studies of the gut microbiome in autistic subjects have focused primarily on pathogenic bacteria, some of which have been implicated in alterations to brain function. One example involves gram-negative bacteria containing lipopolysaccharides in their cell walls, which can induce inflammation of the brain and lead to the accumulation of high levels of mercury in the cerebrum.

A new approach

Krajmalnik-Brown and lead author Dae-Wook Kang are researchers in the Biodesign Institute's Swette Center for Environmental Biotechnology, which is devoted to the use of microbial communities for the benefit of human and environmental health. Their new study is the first to approach autism from a different angle, by examining the possible role of so-called commensal or beneficial bacteria.

Up to a quadrillion (1014) bacteria inhabit the human intestine, contributing to digestion, producing vitamins and promoting GI health. Genes associated with human intestinal flora are 100 times as plentiful as the body's human genes, forming what some have referred to as a second genome. Various environmental factors can destabilize the natural microbiome of the gut, including antibiotics and specific diets.

In the current study, a cohort of 20 healthy and 20 autistic subjects between 3 and 16 years of age were selected and their gut microflora from fecal samples analyzed by means of a technique known as pyrosequencing. Pyrosequencing is a high-throughput method, allowing many DNA samples to be combined as well as many sequences per sample to be analyzed.

Lower diversity of gut microbes was positively correlated with the presence of autistic symptoms in the study. The authors stress that bacterial richness and diversity are essential for maintaining a robust and adaptable bacterial community capable of fighting off environmental challenges. "We believe that a diverse gut is a healthy gut," Krajmalnik-Brown says.

The new study detected decreased microbial diversity in the 20 autistic subjects whose fecal samples were analyzed. Specifically, three bacterial genera—Prevotella, Coprococcus and Veillonellaceae—were diminished in subjects with autism, when compared with samples from normal children. (Surprisingly, these microbial changes did not seem directly correlated with the severity of GI symptoms.)

The three genera represent important groups of carbohydrate-degrading and/or fermenting microbes. Such bacteria could be critical for healthy microbial-gut interactions or play a supportive role for a wide network of different microorganisms in the gut. The latter would explain the decreased diversity observed in autistic samples.

Bacteria: in sickness and in health

Among the fully classified genera in the study, Prevotella was the most conspicuously reduced in autistic subjects. Prevotella is believed to play a key role in the composition of the human gut microbiome. For this reason, the group undertook a sub-genus investigation of autistic subjects. They found that a species known as Prevotella copri occurred only in very low levels in the autistic samples. The species is a common component in normal children exhibiting more diverse and robust microbial communities.

"We think of Prevotella as a healthy, good thing to have," Krajmalnik-Brown notes. (Michael Polan's recent New York Times Magazine story on the microbiome points to the fact that he is proud that his gut microbiome is rich in Prevotella regarding it as a possible sign of a healthy non-Western diet.)

Jin Gyoon Park (the other lead author), who works in the Virginia G. Piper Center for Personalized Diagnostics, under Joshua LaBaer's direction, conducted a rigorous bioinformatic and statistical analysis of the intestinal microflora. He believes that the microbiome can be mined in future work to find diagnostic biomarkers for autism and many other diseases. Quantitative diagnoses of this sort have so far been lacking for autism, a disease for which subjective behavior indices are typically used to identify the disorder.

In describing the next steps for the research group, Kang and Park point to more detailed, gene-level analyses aimed at probing bacterial function and further illuminating relationships between human health and the complexities of the microbiome. Additionally, the group will use the current results as a guide for new treatment studies for autism aimed at modifying bacterial composition in the gut.



INFORMATION:

A new, interdisciplinary consortium (Autism Microbiome Consortium) has been formed to investigate the underpinings of autism and the gut microbiome, bringing together the combined skills of neurologists, psychiatrists, neuroimmunologists, epidemiologists, pediatricians, geneticists, biochemists, microbiologists and others. In addition to Rosa Krajmalnik-Brown and James Adams, the group consists of:

Jack Gilbert (University of Chicago), Catherine Lozupone (University of Colorado), Rob Knight (University of Colorado and HHMI). Mady Hornig (Columbia University), Sarkis Mazmanian (California Institute of Technology), Tanya Murphy (University of South Florida), , Paul Patterson (California Institute of Technology), John Alverdy (University of Chicago), Janet Jansson (Lawrence Berkeley Lab), KImberly Johnson (University of Colorado).

Written by: Richard Harth
Science Writer: Biodesign Institute
richard.harth@asu.edu



ELSE PRESS RELEASES FROM THIS DATE:

Homicide by mentally ill falls, but patient suicide rises in England

2013-07-04
The number of people killed by mental health patients has fallen to its lowest level in a decade -- figures released today show. Experts suggest the fall in homicide reflects safer patient care and point to the possible effect of better treatment of drug and alcohol problems as well as new legal powers in the community. But suicides among mental health patients increased with the current economic difficulties a likely factor. The findings, reported in the National Confidential Inquiry into Suicide and Homicide by People with Mental Illness (NCI) produced by The ...

Improved outlook for immune-based therapies

2013-07-04
The idea of fighting infections and even cancers by inducing protective immune responses may now be a step closer to clinical practice. Researchers have removed a major obstacle to widespread use of so-called adoptive transfer therapy, in which a patient receives "killer" immune cells targeting a disease agent. Existing technologies can easily provide T cells that will recognize a specific antigen, but it has been challenging to identify individual cells most likely to succeed in fighting the disease – until now. Scientists at the Technische Universitaet Muenchen (TUM) ...

Genetic signals reflect the evolutionary impact of cholera

2013-07-04
An international research team has used a novel approach to identify genetic factors that appear to influence susceptibility to cholera. The findings by investigators from Massachusetts General Hospital (MGH), the Broad Institute and the International Center for Diarrhœal Disease Research, Bangladesh (ICDDR,B) indicate the importance of pathways involved in regulating water loss in intestinal cells and of the innate immune system in the body's response to the bacteria that causes cholera, which affects from 3 to 5 million people each year and causes more than 100,000 deaths. ...

First comprehensive regulatory map is a blueprint for how to defeat tuberculosis

2013-07-04
Despite decades of research on the bacterium that causes tuberculosis (TB), scientists have not had a comprehensive understanding of how the bacterium is wired to adapt to changing conditions in the host. Now, researchers at Stanford University, Seattle BioMed, Boston University and the Broad Institute, Max Planck Institute of Biology in Berlin, Germany, Caprion Proteomics Inc. in Montreal, Canada, Brigham and Woman's Hospital (Harvard University), and Colorado State University have taken the first steps toward a complete representation of the regulatory network for Mycobacterium ...

Evidence suggests Antarctic crabs could be native

2013-07-04
A new study has cast doubt on the claim that crabs may have disappeared from Antarctica only to return due to warming seas. The theory surfaced two years ago following the discovery of a major colony of King crabs (Lithodidae) in the Palmer Deep, a basin in the continental shelf off the Antarctic Peninsula. It was thought the species may have left the continent between 40 and 15 million years ago and was returning as seawater temperatures rose. Fears were expressed that its reintroduction would decimate other fauna in the region. But an extensive study of all known ...

Cockatoos 'pick' puzzle box locks

2013-07-04
A species of Indonesian parrot can solve complex mechanical problems that involve undoing a series of locks one after another, revealing new depths to physical intelligence in birds. A team of scientists from Oxford University, the University of Vienna, and the Max Planck Institute, report in PLOS ONE a study in which ten untrained Goffin's cockatoos [Cacatua goffini] faced a puzzle box showing food (a nut) behind a transparent door secured by a series of five different interlocking devices, each one jamming the next along in the series. To retrieve the nut the birds ...

Animal master-burglars: Cockatoos show technical intelligence on a 5-lock problem

2013-07-04
Solving one problem in order to gain access to another, which will enable you to address a third problem (and so on) in order to finally reach a goal – so-called sequential problem solving – is considered to be cognitively highly challenging as it requires the ability to spatially and mentally distance oneself from a desired goal. In the study, ten untrained cockatoos faced a puzzle box showing a nut behind a transparent door closed by five different interlocking devices, each one jamming the next along the series and each required different motor actions in order to ...

Bacteria communicate to help each other resist antibiotics

2013-07-04
New research from Western University unravels a novel means of communication that allows bacteria such as Burkholderia cenocepacia (B. cenocepacia) to resist antibiotic treatment. B. cenocepacia is an environmental bacterium that causes devastating infections in patients with cystic fibrosis (CF) or with compromised immune systems. Dr. Miguel Valvano and first author Omar El-Halfawy, PhD candidate, show that the more antibiotic resistant cells within a bacterial population produce and share small molecules with less resistant cells, making them more resistant to antibiotic ...

Climate change deniers using dirty tricks from 'Tobacco Wars'

2013-07-04
Fossil fuel companies have been funding smear campaigns that raise doubts about climate change, writes John Sauven in the latest issue of Index on Censorship magazine. Environmental campaigner Sauven argues: "Some of the characters involved have previously worked to deny the reality of the hole in the ozone layer, acid rain and the link between tobacco and lung cancer. And the tactics they are applying are largely the same as those they used in the tobacco wars. Doubt is still their product." Governments around the world have also attempted to silence scientists who ...

Boston University study identifies molecular circuitry that helps tuberculosis survive for decades

2013-07-04
(Boston) – In a study from Boston University's National Emerging Infectious Diseases Laboratories (NEIDL), researchers have generated a map of the cellular circuitry of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB). This information, which is being published online as an Advanced Online Publication in the journal Nature, sheds new light on the bacterium's ability to survive inactive in the human body for decades, resist treatment and cause disease. M. tuberculosis can cause devastating infections of the lungs and other body sites. In 2011 ...

LAST 30 PRESS RELEASES:

Discovery of water droplet freezing steps bridges atmospheric science, climate solutions

Positive emotions plus deep sleep equals longer-lasting perceptual memories

Self-assembling cerebral blood vessels: A breakthrough in Alzheimer’s treatment

Adverse childhood experiences in firstborns associated with poor mental health of siblings

Montana State scientists publish new research on ancient life found in Yellowstone hot springs

Generative AI bias poses risk to democratic values

Study examines how African farmers are adapting to mountain climate change

Exposure to air pollution associated with more hospital admissions for lower respiratory infections

Microscopy approach offers new way to study cancer therapeutics at single-cell level

How flooding soybeans in early reproductive stages impacts yield, seed composition

Gene therapy may be “one shot stop” for rare bone disease

Protection for small-scale producers and the environment?

Researchers solve a fluid mechanics mystery

New grant funds first-of-its-kind gene therapy to treat aggressive brain cancer

HHS external communications pause prevents critical updates on current public health threats

New ACP guideline on migraine prevention shows no clinically important advantages for newer, expensive medications

Revolutionary lubricant prevents friction at high temperatures

Do women talk more than men? It might depend on their age

The right kind of fusion neutrons

The cost of preventing extinction of Australia’s priority species

JMIR Publications announces new CEO

NCSA awards 17 students Fiddler Innovation Fellowships

How prenatal alcohol exposure affects behavior into adulthood

Does the neuron know the electrode is there?

Vilcek Foundation celebrates immigrant scientists with $250,000 in prizes

Age and sex differences in efficacy of treatments for type 2 diabetes

Octopuses have some of the oldest known sex chromosomes

High-yield rice breed emits up to 70% less methane

Long COVID prevalence and associated activity limitation in US children

Intersection of race and rurality with health care–associated infections and subsequent outcomes

[Press-News.org] Clues about autism may come from the gut