(Press-News.org) Mysterious bursts of radio waves originating from billions of light years away have left the scientists who detected them speculating about their origins.
The international research team, writing in the journal Science, rule out terrestrial sources for the four fast radio bursts and say their brightness and distance suggest they come from cosmological distances when the Universe was just half its current age.
The burst energetics indicate that they originate from an extreme astrophysical event involving relativistic objects such as neutron stars or black holes.
Study lead Dan Thornton, a PhD student at England's University of Manchester and Australia's Commonwealth Scientific and Industrial Research Organisation, said the findings pointed to some extreme events involving large amounts of mass or energy as the source of the radio bursts.
He said: "A single burst of radio emission of unknown origin was detected outside our Galaxy about six years ago but no one was certain what it was or even if it was real, so we have spent the last four years searching for more of these explosive, short-duration radio bursts. This paper describes four more bursts, removing any doubt that they are real. The radio bursts last for just a few milliseconds and the furthest one that we detected was 11 billion light years away."
Astonishingly, the findings -- taken from a tiny fraction of the sky -- also suggest that there should be one of these signals going off every 10 seconds. Max-Planck Institute Director and Manchester professor, Michael Kramer, explained: "The bursts last only a tenth of the blink of an eye. With current telescopes we need to be lucky to look at the right spot at the right time. But if we could view the sky with 'radio eyes' there would be flashes going off all over the sky every day."
The team, which included researchers from the UK, Germany, Italy, Australia and the US, used the CSIRO Parkes 64metre radio telescope in Australia to obtain their results.
Co-author Professor Matthew Bailes, from the Swinburne University of Technology in Melbourne, thinks the origin of these explosive bursts may be from magnetic neutron stars, known as 'magnetars'. He said: "Magnetars can give off more energy in a millisecond than our Sun does in 300,000 years and are a leading candidate for the burst."
The researchers say their results will also provide a way of finding out the properties of space between the Earth and where the bursts occurred.
Author Dr Ben Stappers, from Manchester's School of Physics and Astronomy, said: "We are still not sure about what makes up the space between galaxies, so we will be able to use these radio bursts like probes in order to understand more about some of the missing matter in the Universe. We are now starting to use Parkes and other telescopes, like the Lovell Telescope of the University of Manchester, to look for these bursts in real time."
INFORMATION:
The institutions involved in the collaboration were the University of Manchester's Jodrell Bank Observatory, the Max-Planck Institute for Radio Astronomy, Bonn, the INAF-Cagliari Astronomical Observatory and the Cagliari University, Sardinia, Swinburne University of Technology, Melbourne, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, the Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO), Curtin University, Western Australia, West Virginia University, US, and the NASA Jet Propulsion Laboratory, California.
Notes for editors:
A copy of the paper, 'A Population of Fast Radio Bursts at Cosmological Distances,' published in Science on 5 July 2013 (4 July embargo is correct), is available under embargo conditions on request.
An artist's impression of the radio wave bursts and the CSIRO Parkes radio telescope in Australia, as well as a short video of three bursts going off in the night sky, is available here: http://astronomy.swin.edu.au/production/parkes/ (Credit: Swinburne Astronomy Productions)
Cosmic radio bursts point to cataclysmic origins
2013-07-05
ELSE PRESS RELEASES FROM THIS DATE:
Technological breakthrough paves the way for better drugs
2013-07-05
Researchers at Karolinska Institutet in Sweden have developed the first method for directly measuring the extent to which drugs reach their targets in the cell. The method, which is described in the scientific journal Science, could make a significant contribution to the development of new, improved drug substances.
Most drugs operate by binding to one or more proteins and affecting their function, which creates two common bottlenecks in the development of drugs; identifying the right target proteins and designing drug molecules able to efficiently seek out and bind to ...
Hubble Telescope reveals variation between hot extrasolar planet atmospheres
2013-07-05
First results from the analysis of eight 'hot Jupiter' exoplanets suggest that winds and clouds play an important role in the atmospheric make up of these exotic planets. Catherine Huitson of the University of Exeter will present the results at the National Astronomy Meeting in St Andrews on Friday 5 July.
Hot Jupiters are giant exoplanets, similar in size to Jupiter, that orbit so close to their stars that their atmospheres can reach temperatures of 1000-3000 degrees Celsius. Astronomers can detect which gases are present in their atmospheres by analysing the spectrum ...
Australian physicists cast new light on spin-bowling
2013-07-05
As the Ashes series gets underway next week, a pair of brothers from Australia have been exploring the physics behind the spin of a cricket ball.
While physicists are much more accustomed to measuring the spin of electrons, protons and neutrons, Garry and Ian Robinson, Honorary Visiting Fellows at the University of New South Wales and the University of Melbourne respectively, have presented equations that govern the trajectory of a spinning ball as it moves through the air in the presence of a wind.
Their paper has been published today, 5 July, in Physica Scripta -- ...
Study reveals ancient jigsaw puzzle of past supercontinent
2013-07-05
A new study published today in the journal Gondwana Research, has revealed the past position of the Australian, Antarctic and Indian tectonic plates, demonstrating how they formed the supercontinent Gondwana 165 million years ago.
Researchers from Royal Holloway University, The Australian National University and Geoscience Australia, have helped clear up previous uncertainties on how the plates evolved and where they should be positioned when drawing up a picture of the past.
Dr Lloyd White from the Department of Earth Sciences at Royal Holloway University said: "The ...
New research could pave the way to safer treatments for arthritis
2013-07-05
The increased risk of heart attack or stroke associated with many arthritis drugs may be avoidable, according to a new international study co-authored by researchers at Imperial College London.
Drugs such as Vioxx, diclofenac, ibuprofen and Celebrex operate by blocking an enzyme known as COX-2, whose presence in blood vessels has up until now been held responsible for these side effects. New research carried out on mice has revealed that COX-2 is largely absent from the major blood vessels and instead found in the brain, gut, and kidney as well as the thymus gland in ...
Brain epigenome changes from birth to adolescence
2013-07-05
Experience of parents with their children and teachers with their students demonstrate how kids change their behaviours and knowledge from infancy to adolescence. Until now, little was known of the causes that could lead to these changes.
Today, an article published in Science in collaboration with the group of Manel Esteller, Director of Epigenetics and Cancer Biology Biomedical Research Institute (IDIBELL), ICREA researcher and Professor of Genetics at the University of Barcelona, gives us an important clue to understanding this process.
Researchers have discovered ...
Unique epigenomic code identified during human brain development
2013-07-05
LA JOLLA, CA – Changes in the epigenome, including chemical modifications of DNA, can act as an extra layer of information in the genome, and are thought to play a role in learning and memory, as well as in age-related cognitive decline. The results of a new study by scientists at the Salk Institute for Biological Studies show that the landscape of DNA methylation, a particular type of epigenomic modification, is highly dynamic in brain cells during the transition from birth to adulthood, helping to understand how information in the genomes of cells in the brain is controlled ...
Feeding galaxy caught in distant searchlight by international research team
2013-07-05
(Santa Barbara, Calif.) — An international group of astronomers that includes UC Santa Barbara astrophysicist Crystal Martin and former UCSB postdoctoral researcher Nicolas Bouché has spotted a distant galaxy hungrily snacking on nearby gas. The gas is seen to fall inward toward the galaxy, creating a flow that both fuels star formation and drives the galaxy's rotation. This is the best direct observational evidence so far supporting the theory that galaxies pull in and devour nearby material in order to grow and form stars. The results will appear in the July 5 issue of ...
Molecular chains hypersensitive to magnetic fields
2013-07-05
Researchers of MESA+, the research institute for nanotechnology of the University of Twente, in cooperation with researchers of the University of Strasbourg and Eindhoven University of Technology, are the first to successfully create perfect one-dimensional molecular wires of which the electrical conductivity can almost entirely be suppressed by a weak magnetic field at room temperature. The underlying mechanism is possibly closely related to the biological compass used by some migratory birds to find their bearings in the geomagnetic field. This spectacular discovery may ...
Spider webs more effective at ensnaring charged insects
2013-07-04
Flapping insects build up an electrical charge that may make them more easily snared by spider webs, according to a new study by University of California, Berkeley, biologists.
The positive charge on an insect such as a bee or fly attracts the web, which is normally negatively or neutrally charged, increasing the chances that an insect flying by will contact and stick to the web, said UC Berkeley post-doctoral fellow Victor Manuel Ortega-Jimenez.
He also suspects that light flexible spider silk, the kind used for make the spirals on top of the stiffer silk that forms ...