(Press-News.org) Ocean currents have a big impact on weather and climate. Without the Gulf Stream, the climate of Northern and Western Europe would be cooler. Scientists at ETH Zurich now uncovered that also relatively small swirling motions in the ocean, so called eddies, impact weather. A large number of such eddies exists in all oceans at any time, featuring diameters of about one hundred kilometers.
Eddies arise because ocean currents are generally turbulent, affected for instance by the topography of the ocean bottom, explains Ivy Frenger, a postdoc in the group of ETH-professor Nicolas Gruber at the Institute of Biogeochemistry and Pollutant Dynamics. "An analogy to this topographic effect are the swirls that occur downstream of a rock in a creek", says Frenger. In the ocean, eddies can be carried along by large-scale currents over vast distances, and also move around independently.
Precise satellite measurements
The ETH scientists analysed comprehensive satellite data to determine the impact of these eddies on the overlying atmosphere. Their focus is the Southern hemisphere where such eddies are especially frequent. They detected the eddies based on precise measurements of sea surface topography. "Eddies appear as bumps or dips on the sea surface as the density of water within the eddies differs from that of the surrounding ambient water", explains Frenger.
The scientists investigated data collected over nearly a decade allowing them to extract information for more than 600'000 transient eddies. They compiled these eddy-data, and compared them to the corresponding overlying wind, cloud and precipitation data which had been retrieved by means of satellites as well. The scientists found that so-called anticyclonic (meaning they rotate counter clockwise in the southern hemisphere) eddies cause on average a local increase of near-surface wind speed, cloud cover and rain probability. In contrast, the clockwise rotating (so-called cyclonic) eddies reduce near-surface wind speed, clouds and rainfall.
Increased variability
Surface water in anticyclonic eddies is warmer than in their surroundings, for cyclonic eddies it is the opposite. These temperature differences mainly reflect the origin of the eddies, meaning they originate from either warmer or cooler waters relative to their current position. Frenger and colleagues computed that wind speed increases by roughly 5 percent, cloud cover by 3 percent and rain probability by 8 percent for each degree Celsius that an eddy is warmer than its ambient water.
According to Frenger, the number of warm and cold eddies is similar in most of the ocean, so that their opposite signals in the atmosphere tend to neutralize themselves, likely leading to only a small change on average. However, the oceanic eddies increase atmospheric variability and hence may influence extreme events. If a storm blows over such an eddy, peaks in the wind speed may be diminished or amplified depending on the sense of rotation of the underlying eddy. Possibly, eddies may also influence the intensity or course of such a storm. "It is important to know the variability caused by ocean eddies and account for it in weather and climate models", concludes Frenger. In addition, in areas where either warm or cold eddies dominate, they may also have larger-scale effects.
Indications for the mechanism
This study is the first examining such eddies systematically with regard to their impacts not only on wind and clouds but also on rainfall. Further, the ETH scientists inferred the mechanism of this phenomenon based on the spatial pattern of the local changes of the weather above the eddies. Two main hypotheses have been discussed in the literature: the first argues that the anomalous sea surface temperatures of the eddies cause a change in the overlying temperature of the atmosphere, which in turn results in changes in surface pressure. This leads to a compensating air flow, more specifically wind. If this hypothesis was true, one would expect wind speed changes at the edge of eddies.
However, the data evaluated by the ETH scientists reveal that the wind speed changes not at the edge of eddies, but rather at the centre. This points to another mechanism to be dominant, one where the anomalous ocean surface temperature modifies primarily the level of turbulence in the overlying atmosphere: the warmer the eddy, the greater the disturbance in the atmosphere above and the greater the altitude to which the eddy affects the lower atmosphere, which subsequently may change wind, clouds and rain.
In this project, the scientists so far only examined the impact of ocean eddies on weather, neglecting the possibility that the resulting changes in the atmosphere influence the ocean, leading to a fully coupled atmosphere ocean system at scales of 100 kilometres and less. In an on-going study, the researchers are investigating this effect with computer simulations.
###
Literature reference
Frenger I, Gruber N, Knutti R, Münnich M: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 2013, Advance Online Publication, doi: 10.38/ngeo1863
Mesoscale ocean eddies impact weather
2013-07-08
ELSE PRESS RELEASES FROM THIS DATE:
Sugar makes cancer light-up in MRI scanners
2013-07-08
A new technique for detecting cancer by imaging the consumption of sugar with magnetic resonance imaging (MRI) has been unveiled by UCL scientists. The breakthrough could provide a safer and simpler alternative to standard radioactive techniques and enable radiologists to image tumours in greater detail.
The new technique, called 'glucose chemical exchange saturation transfer' (glucoCEST), is based on the fact that tumours consume much more glucose (a type of sugar) than normal, healthy tissues in order to sustain their growth.
The researchers found that sensitising ...
Champion nano-rust for producing solar hydrogen
2013-07-08
In the quest for the production of renewable and clean energy, photoelectrochemical cells (PECs) constitute a sort of a Holy Grail. PECs are devices able of splitting water molecules into hydrogen and oxygen in a single operation, thanks to solar radiation. "As a matter of fact, we've already discovered this precious chalice, says Michael Grätzel, Director of the Laboratory of Photonics and Interfaces (LPI) at EPFL and inventor of dye-sensitized photoelectrochemical cells. Today we have just reached an important milestone on the path that will lead us forward to profitable ...
New mouse model reveals a mystery of Duchenne muscular dystrophy, Stanford scientists say
2013-07-08
STANFORD, Calif. — Children with Duchenne muscular dystrophy often die as young adults from heart and breathing complications. However, scientists have been puzzled for decades by the fact that laboratory mice bearing the same genetic mutation responsible for the disease in humans display only mild symptoms and no cardiac involvement.
Now, researchers at the Stanford University School of Medicine have developed a mouse model that accurately mimics the course of the disease in humans. The study is the first to demonstrate a molecular basis for the cardiac defect that is ...
Peering into the protein pathways of a cell
2013-07-08
Storrs, Conn. — Using highly sensitive fluorescent probes, a team of scientists from the University of Connecticut has captured the never-before-seen structural dynamics of an important protein channel inside the cell's primary power plant – the mitochondrion.
The UConn team's study found that the channel complex - known as the translocase of the inner mitochondrial membrane 23 or TIM23 – is not only directly coupled to the energized state of the mitochondrial inner membrane as scientists have long suspected, it also changes its fundamental structure - altering the helical ...
Scientists decipher cellular 'roadmap' of disease-related proteins
2013-07-08
University of Toronto researchers are helping demystify an important class of proteins associated with disease, a discovery that could lead to better treatments for cancer, cystic fibrosis and many other conditions.
Igor Stagljar, Professor in the Faculty of Medicine's Donnelly Centre for Cellular and Biomolecular Research, and his team developed the first roadmap for ATP-binding cassette (ABC) transporter proteins. These proteins are crucial components of every cell, and are also involved in tumor resistance.
Scientists have struggled with understanding how ABC transporter ...
African Americans with blood cancer do not live as long as caucasians, despite equal care
2013-07-08
A new analysis has found that among patients with chronic lymphocytic leukemia, African Americans more commonly present with advanced disease, and they tend to have shorter survival times than Caucasians despite receiving the same care. Published early online in CANCER, a peer-reviewed journal of the American Cancer Society, the results suggest that biological factors may account for some racial disparities in cancer survival.
Among cancer patients, minorities tend to have a worse prognosis than Caucasians for reasons that are unclear. In African American patients, lower ...
Gunning for trouble: Study of young assault victims finds risky mix of gun possession & aggression
2013-07-08
ANN ARBOR, Mich. — They're young. They've been injured in an assault – so badly they went to the emergency room. And nearly one in four of them has a gun, probably an illegal one. What happens next?
A new study by the University of Michigan Injury Center provides data that could be important to breaking the cycle of gun violence that kills more teens and young adults than anything except auto accidents.
In the new issue of the journal Pediatrics, the team from the U-M Injury Center reports data from interviews with 689 teens and young adults who came to an emergency ...
An unlikely competitor for diamond as the best thermal conductor
2013-07-08
CHESTNUT HILL, MA (July 8, 2013) An unlikely material, cubic boron arsenide, could deliver an extraordinarily high thermal conductivity – on par with the industry standard set by costly diamond – researchers report in the current issue of the journal Physical Review Letters.
The discovery that the chemical compound of boron and arsenic could rival diamond, the best-known thermal conductor, surprised the team of theoretical physicists from Boston College and the Naval Research Laboratory. But a new theoretical approach allowed the team to unlock the secret to boron arsenide's ...
Jump for your life! Bipedal rodents survive in the desert with a hop, a skip and a jump
2013-07-06
VIDEO:
Quadrupedal jirds move in more predictable trajectories.
Click here for more information.
Researchers have found that bipedal desert rodents manage to compete with their quadrupedal counterparts by using a diverse set of jumps, hops and skips. A new study, to be presented at the Society for Experimental Biology meeting in Valencia on July 6, suggests that it is this unpredictable movement that allows the bipedal rodents to coexist in Old World deserts with quadrupedal ...
Treating oil spills with chemical dispersants: Is the cure worse than the ailment?
2013-07-06
A team of researchers headed by Prof Guy Claireaux at the University of Brest in France looked for the first time at the effects of chemically dispersed oil on the performance of European seabass to subsequent environmental challenges.
The researchers designed swimming challenge tests in an 'aquatic treadmill', similar to the tests used in human medicine for health diagnosis. They analysed European seabass' maximum swimming performance, hypoxia tolerance and thermal sensitivity as markers for their capabilities to face natural contingencies. They then exposed the fish ...