(Press-News.org) UPTON, NY-In the search for understanding how some magnetic materials can be transformed to carry electric current with no energy loss, scientists at the U.S. Department of Energy's Brookhaven National Laboratory, Cornell University, and collaborators have made an important advance: Using an experimental technique they developed to measure the energy required for electrons to pair up and how that energy varies with direction, they've identified the factors needed for magnetically mediated superconductivity-as well as those that aren't.
"Our measurements distinguish energy levels as small as one ten-thousandth the energy of a single photon of light-an unprecedented level of precision for electronic matter visualization," said Séamus Davis, Senior Physicist at Brookhaven the J.G. White Distinguished Professor of Physical Sciences at Cornell, who led the research described in Nature Physics. "This precision was essential to writing down the mathematical equations of a theory that should help us discover the mechanism of magnetic superconductivity, and make it possible to search for or design materials for zero-loss energy applications."
The material Davis and his collaborators studied was discovered in part by Brookhaven physicist Cedomir Petrovic ten years ago, when he was a graduate student working at the National High Magnetic Field Laboratory. It's a compound of cerium, cobalt, and indium that many believe may be the simplest form of an unconventional superconductor-one that doesn't rely on vibrations of its crystal lattice to pair up current-carrying electrons. Unlike conventional superconductors employing that mechanism, which must be chilled to near absolute zero (-273 degrees Celsius) to operate, many unconventional superconductors operate at higher temperatures-as high as -130°C. Figuring out what makes electrons pair in these so-called high-temperature superconductors could one day lead to room-temperature varieties that would transform our energy landscape.
The main benefit of CeCoIn5, which has a chilly operating temperature (-271°C), is that it can act as the "hydrogen atom" of magnetically mediated superconductors, Davis said-a test bed for developing theoretical descriptions of magnetic superconductivity the way hydrogen, the simplest atom, helped scientists derive mathematical equations for the quantum mechanical rules by which all atoms operate.
"Scientists have thought this material might be 'the one,' a compound that would give us access to the fundamentals of magnetic superconductivity in a controllable way," Davis said. "But we didn't have the tools to directly study the process of electron pairing. This paper announces the successful invention of the techniques and the first examination of how that material works to form a magnetic superconductor."
The method, called quasiparticle scattering interference, uses a spectroscopic imaging scanning tunneling microscope designed by Davis to measure the strength of the "glue" holding electron pairs together as a function of the direction in which they are moving. If magnetism is the true source of electron pairing, the scientists should find a specific directional dependence in the strength of the glue, because magnetism is highly directional (think of the north and south poles on a typical bar magnet). Electron pairs moving in one direction should be very strongly bound while in other directions the pairing should be non-existent, Davis explained.
To search for this effect, Davis group members Milan P. Allan and Freek Massee used samples of the material made by Petrovic. "To make these experiments work, you have to get the materials exactly right," Davis said. "Petrovic synthesized atomically perfect samples."
With the samples held in the microscope far below their superconducting temperature, the scientists sent in bursts of energy to break apart the electron pairs. The amount of energy it takes to break up the pair is known as the superconducting energy gap.
"When the pairs break up, the two electrons move off in opposite directions. When they hit an impurity in the sample, that makes a kind of interference, like waves scattering off a lighthouse," Davis explained. "We make movies of those standing waves. The interference patterns tell us the direction the electron was traveling for each energy level we send into the system, and how much energy it takes to break apart the pairs for each direction of travel."
The instrument uses the finest energy resolution for electronic matter visualization of any experiment ever achieved to tease out incredibly small energy differences-increments that are a tiny fraction of the energy of a single photon of light. The precision measurements revealed the directional dependence the scientists were looking for in the superconducting energy gap.
"Our job as scientists is to write down an equation and solve it to give a quantitative description of what we observed, and then use it to describe how magnetic superconductivity works and make and test predictions about how certain new materials will behave," Davis said.
One of the most important things the theory will do, he explained, will be to help separate the "epiphenomena," or side effects, from the true phenomena-the fundamental elements essential for superconductivity.
"Once you know the fundamental issues, which is what these studies reveal, it greatly enhances the probability of discovering a new material with the correct characteristics because you know what you are looking for-and you know what to avoid. We are very enthusiastic that we will be able to provide the theoretical tools for identifying the stuff to avoid when trying to make magnetic superconductors with improved properties," Davis said.
###
Davis and Petrovic worked with additional collaborators at Brookhaven, Cornell, and St. Andrews. The research was funded by the DOE Office of Science and the U.K. Engineering and Physical Sciences Research Council.
DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
Related links
Scientific Paper: "Imaging Cooper pairing of heavy fermions in CeCoIn5" http://dx.doi.org/10.1038/nphys2671
Note that this link to the paper will not be active until after the embargo lifts on Sunday, July 14, 2013, 1 p.m. U.S. Eastern Time. Prior to that reporters can request a copy of the paper from the Nature press office.
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more or follow Brookhaven Lab on Twitter.
Imaging electron pairing in a simple magnetic superconductor
Findings and resulting theory could reveal mechanism behind zero-energy-loss current-carrying capability
2013-07-15
ELSE PRESS RELEASES FROM THIS DATE:
Key step in molecular 'dance' that duplicates DNA deciphered
2013-07-15
UPTON, NY-Building on earlier work exploring the complex choreography by which intricate cellular proteins interact with and copy DNA prior to cell division, scientists at the U.S. Department of Energy's Brookhaven National Laboratory and collaborators have captured a key step-molecular images showing how the enzyme that unwinds the DNA double helix gets drawn to and wrapped around its target. Details of the research, published in the journal Nature Structural & Molecular Biology, enhance understanding of an essential biological process and may suggest ways for stopping ...
Continuous satellite monitoring of ice sheets needed to better predict sea-level rise
2013-07-15
The findings, published in Nature Geoscience, underscore the need for continuous satellite monitoring of the ice sheets to better identify and predict melting and the corresponding sea-level rise.
The ice sheets covering Antarctica and Greenland contain about 99.5 per cent of the Earth's glacier ice which would raise global sea level by some 63m if it were to melt completely. The ice sheets are the largest potential source of future sea level rise – and they also possess the largest uncertainty over their future behaviour. They present some unique challenges for predicting ...
Some volcanoes 'scream' at ever-higher pitches until they blow their tops
2013-07-15
It is not unusual for swarms of small earthquakes to precede a volcanic eruption. They can reach a point of such rapid succession that they create a signal called harmonic tremor that resembles sound made by various types of musical instruments, though at frequencies much lower than humans can hear.
A new analysis of an eruption sequence at Alaska's Redoubt Volcano in March 2009 shows that the harmonic tremor glided to substantially higher frequencies and then stopped abruptly just before six of the eruptions, five of them coming in succession.
"The frequency of this ...
Antiviral enzyme contributes to several forms of cancer, University of Minnesota researchers say
2013-07-15
Researchers at the University of Minnesota have discovered that a human antiviral enzyme causes DNA mutations that lead to several forms of cancer.
The discovery, reported in the July 14 issue of Nature Genetics, follows the team's earlier finding that the enzyme, called APOBEC3B, is responsible for more than half of breast cancer cases. The previous study was published in Nature in February.
APOBEC3B is part of a family of antiviral proteins that Harris has studied for more than a decade. His effort to understand how these proteins work has led to these surprising ...
Scientists solve a 14,000-year-old ocean mystery
2013-07-15
At the end of the last Ice Age, as the world began to warm, a swath of the North Pacific Ocean came to life. During a brief pulse of biological productivity 14,000 years ago, this stretch of the sea teemed with phytoplankton, amoeba-like foraminifera and other tiny creatures, who thrived in large numbers until the productivity ended—as mysteriously as it began—just a few hundred years later.
Researchers have hypothesized that iron sparked this surge of ocean life, but a new study led by Woods Hole Oceanographic Institution (WHOI) scientists and colleagues at the University ...
Scientists discover kill-switch controls immune-suppressing cells
2013-07-15
Contact: Liz Williams
williams@wehi.edu.au
61-428-034-089
Walter and Eliza Hall Institute
Kris Van der Beken
kris.vanderbeken@vib.be
32-473-783-435
VIB
Scientists discover kill-switch controls immune-suppressing cells
Scientists have uncovered the mechanism that controls whether cells that are able to suppress immune responses live or die.
The discovery of the cell death processes that determine the number of 'regulatory T cells' an individual has could one day lead to better treatments for immune disorders.
Regulatory T cells are members of a group ...
Sexual reproduction only second choice for powdery mildew
2013-07-15
Powdery mildew is one of the most dreaded plant diseases: The parasitic fungus afflicts crops such as wheat and barley and is responsible for large harvest shortfalls every year. Beat Keller and Thomas Wicker, both plant biologists from the University of Zurich, and their team have been analyzing the genetic material of wheat mildew varieties from Switzerland, England and Israel while the team headed by Paul Schulze-Lefert at the Max Planck Institute for Plant Breeding Research in Cologne studies the genetic material of barley mildew. The results recently published in Nature ...
Carnegie Mellon researchers develop artificial cells to study molecular crowding and gene expression
2013-07-15
PITTSBURGH—The interior of a living cell is a crowded place, with proteins and other macromolecules packed tightly together. A team of scientists at Carnegie Mellon University has approximated this molecular crowding in an artificial cellular system and found that tight quarters help the process of gene expression, especially when other conditions are less than ideal.
As the researchers report in an advance online publication by the journal Nature Nanotechnology, these findings may help explain how cells have adapted to the phenomenon of molecular crowding, which has ...
Early spatial reasoning predicts later creativity and innovation, especially in STEM fields
2013-07-15
Exceptional spatial ability at age 13 predicts creative and scholarly achievements over 30 years later, according to results from a new longitudinal study published in Psychological Science, a journal of the Association for Psychological Science.
The study, conducted by psychology researcher David Lubinski and colleagues at Vanderbilt University, provides evidence that early spatial ability — the skill required to mentally manipulate 2D and 3D objects — predicts the development of new knowledge, and especially innovation in science, technology, engineering, and mathematics ...
Undiagnosed pre-diabetes highly prevalent in early Alzheimer's disease study
2013-07-14
BOSTON – When Georgetown University neurologist R. Scott Turner, MD, PhD, began enrolling people with mild to moderate Alzheimer's disease into a nationwide study last year, he expected to find only a handful of participants with undiagnosed glucose intolerance, as all the patients were already under a doctor's care and those with known diabetes were excluded. But Turner says he was "shocked" by how many study participants were found to have pre-diabetes — a finding that is triggering important questions.
Turner's study examines resveratrol, a compound found in red grapes ...
LAST 30 PRESS RELEASES:
Program takes aim at drinking, unsafe sex, and sexual assault on college campuses
Inability to pay for healthcare reaches record high in U.S.
Science ‘storytelling’ urgently needed amid climate and biodiversity crisis
KAIST Develops Retinal Therapy to Restore Lost Vision
Adipocyte-hepatocyte signaling mechanism uncovered in endoplasmic reticulum stress response
Mammals were adapting from life in the trees to living on the ground before dinosaur-killing asteroid
Low LDL cholesterol levels linked to reduced risk of dementia
Thickening of the eye’s retina associated with greater risk and severity of postoperative delirium in older patients
Almost one in ten people surveyed report having been harmed by the NHS in the last three years
Enhancing light control with complex frequency excitations
New research finds novel drug target for acute myeloid leukemia, bringing hope for cancer patients
New insight into factors associated with a common disease among dogs and humans
Illuminating single atoms for sustainable propylene production
New study finds Rocky Mountain snow contamination
Study examines lactation in critically ill patients
UVA Engineering Dean Jennifer West earns AIMBE’s 2025 Pierre Galletti Award
Doubling down on metasurfaces
New Cedars-Sinai study shows how specialized diet can improve gut disorders
Making moves and hitting the breaks: Owl journeys surprise researchers in western Montana
PKU Scientists simulate the origin and evolution of the North Atlantic Oscillation
ICRAFT breakthrough: Unlocking A20’s dual role in cancer immunotherapy
How VR technology is changing the game for Alzheimer’s disease
A borrowed bacterial gene allowed some marine diatoms to live on a seaweed diet
Balance between two competing nerve proteins deters symptoms of autism in mice
Use of antifungals in agriculture may increase resistance in an infectious yeast
Awareness grows of cancer risk from alcohol consumption, survey finds
The experts that can outsmart optical illusions
Pregnancy may reduce long COVID risk
Scientists uncover novel immune mechanism in wheat tandem kinase
Three University of Virginia Engineering faculty elected as AAAS Fellows
[Press-News.org] Imaging electron pairing in a simple magnetic superconductorFindings and resulting theory could reveal mechanism behind zero-energy-loss current-carrying capability