PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

UMMS scientists show proof-of-principal for silencing extra chromosome responsible for Down syndrome

Successful silencing of 1 chromosome 21 advances translational research and surmounts the first major obstacle to 'chromosome therapy' in patient-derived stem cells in culture

2013-07-18
(Press-News.org) WORCESTER, MA – Scientists at the University of Massachusetts Medical School are the first to establish that a naturally occurring X chromosome "off switch" can be rerouted to neutralize the extra chromosome responsible for trisomy 21, also known as Down syndrome, a genetic disorder characterized by cognitive impairment.

The discovery provides the first evidence that the underlying genetic defect responsible for Down syndrome can be suppressed in cells in culture (in vitro). This paves the way for researchers to study the cell pathologies and identify genome-wide pathways implicated in the disorder, a goal that has so far proven elusive. Doing so will improve scientist's understanding of the basic biology underlying Down syndrome and may one day help establish potential therapeutic targets for future therapies. Details of the study by Jiang et al. were published online in Nature.

"The last decade has seen great advances in efforts to correct single-gene disorders, beginning with cells in vitro and in several cases advancing to in vivo and clinical trials," said lead author Jeanne B. Lawrence, PhD, professor of cell & developmental biology at the University of Massachusetts Medical School. "By contrast, genetic correction of hundreds of genes across an entire extra chromosome has remained outside the realm of possibility. Our hope is that for individuals living with Down syndrome, this proof-of-principal opens up multiple exciting new avenues for studying the disorder now, and brings into the realm of consideration research on the concept of "chromosome therapy' in the future."

Humans are born with 23 pairs of chromosomes, including two sex chromosomes, for a total of 46 in each cell. People with Down syndrome are born with three (rather than two) copies of chromosome 21, and this "trisomy 21" causes cognitive disability, early-onset Alzheimer's disease; and a greater risk of childhood leukemia, heart defects and immune and endocrine system dysfunction. Unlike genetic disorders caused by a single gene, genetic correction of a whole chromosome in trisomic cells has been beyond the realm of possibility, even in cultured cells.

Harnessing the power of the RNA gene called XIST, which is normally responsible for "turning off" one of the two X chromosomes found in female mammals, UMass Medical School scientists have shown that the extra copy of chromosomes 21 responsible for Down syndrome can be silenced in the laboratory using patient-derived stem cells.

The natural function of the XIST gene, located on the X chromosome, is to effectively silence one of the two X chromosomes in female cells, making expression of X-linked genes similar to that of men, who have just one X chromosome. The large XIST RNA is produced early in development from one of the female's two X chromosomes, and this unique RNA then "paints" the X chromosome and modifies its structure so that its DNA can't be expressed to produce proteins and other components. This effectively renders most of the genes on the extra chromosome inactive.

Lawrence and colleague Lisa Hall PhD, research assistant professor of cell and developmental biology at UMMS, became motivated by the idea that this effect might be replicated in an extra chromosome 21 in trisomic cells and Jun Jiang, PhD, instructor of cell and developmental biology at UMMS, worked with Dr. Lawrence to begin a research project to insert the XIST gene into one chromosome 21 – supported by NIH funding for high-risk, high-impact work. They worked to do this in induced pluripotent stem cells derived from fibroblast cells donated by a Down syndrome patient because stem cells have the special capacity to form different cell types of the body. Their work showed that the large XIST gene could be inserted at a specified location in the chromosome using zinc finger nuclease (ZFN) technology, a key tool provided by collaborators at Sangamo BioSciences, Inc., a biotechnology company based in Richmond, California. Furthermore, RNA from the inserted XIST gene effectively repressed genes across the extra chromosome, returning gene expression levels to near normal levels and effectively silencing the chromosome.

This finding opens multiple new avenues for translational scientists to study Down syndrome in ways not previously possible. Determining the underlying cell pathologies and gene pathways responsible for the syndrome has previously proven difficult, because of the complexity of the disorder and the normal genetic and epigenetic variation between people and cells. For example, some prior studies suggested that cell proliferation in Down syndrome patients may be impaired, but differences between people and cell lines made it difficult to conclude this definitively. By controlling expression of the XIST gene, Lawrence and colleagues were able to compare otherwise identical cultures of the Down syndrome cells, with and without expression of the extra chromosome. What they showed is that the Down syndrome cells have defects in cell proliferation and in neural cell differentiation, both of which are reversed by silencing one chromosome 21 by XIST.

"This highlights the potential of this new experimental model to study a host of different questions in different human cell-types, and in Down syndrome mouse models" said Lawrence. "We now have a powerful tool for identifying and studying the cellular pathologies and pathways impacted directly due to over-expression of chromosome 21."

"Dr. Lawrence has harnessed the power of a natural process to target abnormal gene expression in cells that have an aberrant number of chromosomes," said Anthony Carter, PhD, of the National Institutes of Health's National Institute of General Medical Sciences, which partly supported the study. "Her work provides a new tool that could yield novel insights into how genes are silenced on a chromosomal scale, and into the pathological processes associated with chromosome disorders such as Down syndrome."

New discoveries made using this approach could one day identify new therapeutics for chromosome disorders like Down syndrome. "In the short term the correction of Down syndrome cells in culture accelerates the study of cell pathology and translational research into therapeutics, but also for the longer-term, potential development of "chromosome therapies", which utilizes epigenetic strategies to regulate chromosomes, is now at least conceivable. Since therapeutic strategies for common chromosomal abnormalities like Down syndrome have received too little attention for too long, for the sake of millions of patients and their families across the US and the world, we ought to try. " said Lawrence.

Lawrence and colleagues will now use this technology to test whether "chromosome therapy" can correct the pathologies seen in mouse models of Down syndrome.

INFORMATION:

About the University of Massachusetts Medical School

The University of Massachusetts Medical School (UMMS), one of five campuses of the University system, is comprised of the School of Medicine, the Graduate School of Biomedical Sciences, the Graduate School of Nursing, a thriving research enterprise and an innovative public service initiative, Commonwealth Medicine. Its mission is to advance the health of the people of the Commonwealth through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. In doing so, it has built a reputation as a world-class research institution and as a leader in primary care education. The Medical School attracts more than $250 million annually in research funding, placing it among the top 50 medical schools in the nation. In 2006, UMMS's Craig C. Mello, PhD, Howard Hughes Medical Institute Investigator and the Blais University Chair in Molecular Medicine, was awarded the Nobel Prize in Physiology or Medicine, along with colleague Andrew Z. Fire, PhD, of Stanford University, for their discoveries related to RNA interference (RNAi). The 2013 opening of the Albert Sherman Center ushered in a new era of biomedical research and education on campus. Designed to maximize collaboration across fields, the Sherman Center is home to scientists pursuing novel research in emerging scientific fields with the goal of translating new discoveries into innovative therapies for human diseases.

END



ELSE PRESS RELEASES FROM THIS DATE:

Bees under threat from disease-carrying bumblebee imports, research reveals

2013-07-18
Stricter controls over bumblebee imports to the UK are urgently required to prevent diseases spreading to native bumblebees and honeybees, scientists have warned. The call follows the discovery of parasites in over three-quarters of imported bumblebee colonies they tested. The study - the first of its kind in the UK - is published today in the Journal of Applied Ecology. While wild species of bees and other insects pollinate many crops, commercially-reared and imported bumblebees are essential for pollination of greenhouse crops such as tomatoes. They are also used to ...

Mortality rates for emergency surgical admissions vary widely among hospitals in England

2013-07-18
A new study reveals significant hospital-to-hospital variability in patient death rates following emergency surgical admissions in England. Published early online in the BJS (British Journal of Surgery), the study also found that survival rates were higher in hospitals with better resources. Patients presenting as emergencies account for the majority of deaths associated with general surgery. There is increasing evidence that the quality of care for these high-risk patients is variable across hospitals within England's National Health Service, which is the country's ...

80 percent of Malaysian Borneo degraded by logging

2013-07-18
Washington, DC—A study published in the July 17, issue of the journal PLOS ONE found that more than 80% of tropical forests in Malaysian Borneo have been heavily impacted by logging. The Malaysian states of Sabah and Sarawak were already thought to be global hotspots of forest loss and degradation due to timber and oil palm industries, but the rates and patterns of change have remained poorly measured by conventional field or satellite approaches. A research team from the University of Tasmania, University of Papua New Guinea, and the Carnegie Institution for Science ...

Empty decoys divert antibodies from neutralizing gene therapy in cell, animal studies

2013-07-18
Gene therapy researchers have produced a bioengineered decoy that fools the immune system and prevents it from mistakenly defeating the benefits delivered by a corrective gene. The decoy was effective in animal studies, and if the approach succeeds in humans, it offers a potential new treatment for genetic diseases such as hemophilia, while advancing the broader field of gene therapy. "This decoy strategy could be individualized to patients and could greatly expand the population of patients who may benefit from gene therapy," said study leader Katherine A. High, M.D., ...

Scripps Research Institute scientists find 3D structure of key drug target for diabetes

2013-07-18
LA JOLLA, CA -- An international team led by scientists at The Scripps Research Institute (TSRI) has determined and analyzed the three-dimensional atomic structure of the human glucagon receptor. The receptor, found mainly on liver and kidney cells, helps regulate glucose levels in the bloodstream and is the target of potential therapeutic agents for type 2 diabetes. "Our data should change the current view of how drugs are designed with this and related receptors," said TSRI Research Associate Fai Yiu Siu, PhD, who was first author of the study. The study is reported ...

Mutation linked to congenital urinary tract defects

2013-07-18
NEW YORK, NY (July 17, 2013) — Researchers at Columbia University Medical Center (CUMC) and collaborators have identified a genetic mutation that causes congenital malformations of the kidney and urinary tract, a common form of birth defect and the most common cause of kidney failure in children. It is the first time that a specific genetic mutation has been linked to a non-syndromic form of urinary tract malformation. The findings were published in the July 17 online issue of the New England Journal of Medicine. The research team, led by Ali Gharavi, MD, associate professor ...

Impossible material made by Uppsala University researchers

2013-07-18
A novel material with world record breaking surface area and water adsorption abilities has been synthesized by researchers from Uppsala University, Sweden. The results are published today in PLOS ONE. The magnesium carbonate material that has been given the name Upsalite is foreseen to reduce the amount of energy needed to control environmental moisture in the electronics and drug formulation industry as well as in hockey rinks and ware houses. It can also be used for collection of toxic waste, chemicals or oil spill and in drug delivery systems, for odor control and ...

'Intelligent knife' tells surgeon which tissue is cancerous

2013-07-18
Scientists have developed an "intelligent knife" that can tell surgeons immediately whether the tissue they are cutting is cancerous or not. In the first study to test the invention in the operating theatre, the "iKnife" diagnosed tissue samples from 91 patients with 100 per cent accuracy, instantly providing information that normally takes up to half an hour to reveal using laboratory tests. The findings, by researchers at Imperial College London, are published today in the journal Science Translational Medicine. The study was funded by the National Institute for Health ...

Earth's gold came from colliding dead stars

2013-07-18
We value gold for many reasons: its beauty, its usefulness as jewelry, and its rarity. Gold is rare on Earth in part because it's also rare in the universe. Unlike elements like carbon or iron, it cannot be created within a star. Instead, it must be born in a more cataclysmic event - like one that occurred last month known as a short gamma-ray burst (GRB). Observations of this GRB provide evidence that it resulted from the collision of two neutron stars - the dead cores of stars that previously exploded as supernovae. Moreover, a unique glow that persisted for days at ...

Conflict threatens global nutrition progress, new report warns

2013-07-18
Major progress in tackling child undernutrition in some of the world's toughest countries is under threat as military and security funding takes precedence, a new report from aid agency World Vision warns. The number of children under five who die every year has decreased by half since 1990. Yet, World Vision's Fragile but not Helpless report (PDF) finds that this progress is under threat. Countries marred by conflict or fragility have some of the highest rates of acute and chronic undernutrition in the world. In Africa alone it is on average 50 percent higher in fragile ...

LAST 30 PRESS RELEASES:

A new chapter in Roman administration: Insights from a late Roman inscription

Global trust in science remains strong

New global research reveals strong public trust in science

Inflammation may explain stomach problems in psoriasis sufferers

Guidance on animal-borne infections in the Canadian Arctic

Fatty muscles raise the risk of serious heart disease regardless of overall body weight

HKU ecologists uncover significant ecological impact of hybrid grouper release through religious practices

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

[Press-News.org] UMMS scientists show proof-of-principal for silencing extra chromosome responsible for Down syndrome
Successful silencing of 1 chromosome 21 advances translational research and surmounts the first major obstacle to 'chromosome therapy' in patient-derived stem cells in culture