PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Haste and waste on neuronal pathways

Bio Engineering

2013-07-19
(Press-News.org) This news release is available in German.

To write this little piece of text, the brain sends commands to arms and fingers to tap on the keyboard. Neuronal cells with their cable-like extensions, such as axons, transfer this information as electrical pulses that trigger muscles to move. The axonal signal speed can be to up to 100m/s in myelinated axons along the spinal cord.

For a long time, scientists assumed that axonal signal conduction is by and large digital: either there is a signal, "1", or there is no signal, "0".

Strong propagation speed variations

Now, a team of researchers under Douglas Bakkum and Andreas Hierlemann at the Department BSSE of ETH Zurich in Basel presents evidence that there may be more to axons than only digital signal conduction. They could directly measure and demonstrate that the speed of an axonal signal varies considerably within different segments of the very same axon by placing hundreds of electrodes along the axon. Moreover, the velocity pattern changed from day to day or within hours as did the morphology and position of the axon.

The exact meaning of these speed variations and the origin cannot be explained yet, as there is too little information available about axonal conduction. This may, to a large part, be a consequence of the tiny diameter of the axons. The length of an axon can be more than a meter, e.g., in the spinal cord, but the average diameter is in between 80 nm and a few micrometers. This small diameter makes any measurement of axonal potentials difficult, which, of course, also renders establishing the mechanisms that may produce the large speed variations a difficult task.

Unclear cause

Up to now, only hypotheses concerning these speed variations exist. The temporal characteristics of axonal conduction may form part of the overall information processing abilities of ensembles of neurons or contribute to how neurons adapt to new information. The research group plans on further investigating these effects in collaboration with researchers in other disciplines and research institutions that have complementary expertise and technologies.

The related research work is also facilitated through Hierlemann's 5-year ERC Advanced Grant and Bakkum's SNF Ambizione Grant awarded in 2010/2011. However, the researchers do not expect a fast elucidation of the axonal speed variations. Considering the small dimensions of axons, it will probably take years to collect conclusive evidence.

Up to now, a detailed and long-term investigation of signals of ensembles of neurons and their axons was hardly possible. The D-BSSE research group, during the last 10 years, devoted a lot of time and efforts to develop the high-resolution microelectronic chips, hosting thousands of microelectrodes. The now published, detailed and precise axonal propagation speed measurements reward the scientists for their investment and validate the approach. "We hope to acquire important new evidence with our technology," they state. Other technologies have not yet provided a high enough spatio-temporal resolution to characterize details of axonal signal conduction.

High-resolution chip developed

The microelectrode array chip of the BSSE research group has 11'000 electrodes within a very small area (3150 electrodes per square millimeter) that record from or stimulate neuronal cells or ensembles. Data from 126 arbitrarily selectable electrodes can be simultaneously recorded by means of custom-developed on-chip microelectronic circuits. The neuronal cells grow directly atop the circuitry units on the microelectronic chip, which is fabricated in industrial complementary-metal-oxide-semiconductor (CMOS) technology. Signals traveling along the axons of the neurons can be measured and localized at high spatial and temporal resolution, owing to the small electrode diameter and tight electrode spacing. Moreover, electrodes can be used to stimulate single axons with the aim to evoke action potentials that propagate back to the respective cell body or soma and elicit action potentials there.

In his opinion, the neuroscience community has underestimated the potential of microelectrodes arrays for quite some time, says Prof. Hierlemann. With the work published now in "Nature Communications", he hopes to further establish this method. "These results show that the microelectrode array technology is enabling access to data that are currently not accessible through other technologies," says the bioengineer.

Neurons, axons and signal propagation

Nerve cells or neurons communicate with other neurons via electrical and chemical signals. If an electrical signal within a cell body, close to the axon initial segment, is large enough, it enters the axon and propagates along its length at a high speed. This is achieved by alterations in the so-called resting potential of the axon membrane, which usually has a steady negative value. Sodium ion channels open, and because of a concentration gradient, positively charged sodium ions from outside the axon travel into the axon. As a consequence, the membrane potential is briefly reversed in polarity until potassium channels open and positively charged potassium ions are released into the external liquid. This brief change in membrane potential, a so-called action potential, can be detected with the microelectrode array chip. An action potential travels without attenuation to synapses, neuron-to-neuron junctions, where the electrical signal is translated into a chemical signal: neurotransmitters are released, diffuse through the small synaptic cleft and initiate electrical activity in the neighboring postsynaptic cell. After an action potential event, the original sodium and potassium ion concentrations outside and inside of the axonal membrane and the associated resting potential across the membrane are restored through membrane pumps. The overall duration of an action potential event is on the order of 2 milliseconds.

###

Reference

Bakkum DJ, Frey U, Radivojevic M, Russell TL, Müller J, Fiscella M, Takahashi H & Hierlemann A. Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. Nature Communications, first published online 19th July 2013. DOI: 10.1038/ncomms318


ELSE PRESS RELEASES FROM THIS DATE:

Disney Research develops method to provide tactile feedback in free air

2013-07-19
Depth cameras and other motion-tracking devices allow people to use natural gestures to play computer games, yet the experience remains unnatural because they can't feel what their eyes can see. Disney Research, Pittsburgh, has developed a solution, however, that could enhance not only games, but a variety of virtual experiences. Called AIREAL, the new technology uses controlled puffs of compressed air – something akin to smoke rings – to create the impression of a ball bouncing off a hand, of an arm tingling from the flutter of a butterfly's wings, or of the rippling ...

Disney researchers reconstruct detailed 3D scenes from hundreds of high-resolution 2D images

2013-07-19
Investigators at Disney Research, Zürich have developed a method for using hundreds of photographic images to build 3D computer models of complex, real-life scenes that meet the increasing demands of today's movie, TV and game producers for high-resolution imagery. Building 3D models from multiple 2D images captured from a variety of viewing positions is nothing new, but doing so for highly detailed or cluttered environments at high resolution has proved difficult because of the large amounts of data involved. The Disney Research, Zürich team, however, developed an algorithm ...

Controlling friction by tuning van der Waals forces

2013-07-19
This news release is available in German. For a car to accelerate there has to be friction between the tire and the surface of the road. The amount of friction generated depends on numerous factors, including the minute intermolecular forces acting between the two surfaces in contact – so-called van der Waals forces. The importance of these intermolecular interactions in generating friction has long been known, but has now been demonstrated experimentally for the first time by a research team led by Physics Professor Karin Jacobs from Saarland University and Professor ...

It's not just the heat -- it's the ozone: Study highlights hidden dangers

2013-07-19
During heat waves -- when ozone production rises -- plants' ozone absorption is curtailed, leaving more pollution in the air, and costing an estimated 460 lives in the UK in the hot summer of 2006. Vegetation plays a crucial role in reducing air pollution, but new research by the Stockholm Environment Institute (SEI) at the University of York shows that they may not protect us when we need it most: during extreme heat, when ozone formation from traffic fumes, industrial processes and other sources is at its worst. The reason, explained lead author Dr Lisa Emberson, is ...

Tuberculosis genomes recovered from 200-year old Hungarian mummy

2013-07-19
Researchers at the University of Warwick have recovered tuberculosis (TB) genomes from the lung tissue of a 215-year old mummy using a technique known as metagenomics. The team, led by Professor Mark Pallen, Professor of Microbial Genomics at Warwick Medical School, working with Helen Donoghue at University College London and collaborators in Birmingham and Budapest, sought to use the technique to identify TB DNA in a historical specimen. The term 'metagenomics' is used to describe the open-ended sequencing of DNA from samples without the need for culture or target-specific ...

Alternative target for breast cancer drugs

2013-07-19
HEIDELBERG, 19 July 2013 – Scientists have identified higher levels of a receptor protein found on the surface of human breast tumour cells that may serve as a new drug target for the treatment of breast cancer. The results, which are published today in EMBO Molecular Medicine, show that elevated levels of the protein Ret, which is short for "Rearranged during transfection", are associated with a lower likelihood of survival for breast cancer patients in the years following surgery to remove tumours and cancerous tissue. "Our findings suggest that Ret kinase might be an ...

If you're not looking for it, you probably won't see it

2013-07-19
Boston—If you were working on something at your computer and a gorilla floated across your computer screen, would you notice it? You would like to think yes, however, research shows that people often miss such events when engaged in a difficult task. This is a phenomenon known as inattentional blindness (IB). In a new study from Brigham and Women's Hospital (BWH) in Boston, researchers have found that even expert searchers, operating in their domain of expertise, are vulnerable to inattentional blindness. This study published this week Psychological Science. "When engaged ...

Calcium linked to increased risk of heart disease and death in patients with kidney disease

2013-07-19
TORONTO, ON, July 19, 2013 — Kidney patients who take calcium supplements to lower their phosphorous levels may be at a 22 per cent higher risk of death than those who take other non-calcium based treatments, according to a new study by Women's College Hospital's Dr. Sophie Jamal. The study, published today in the Lancet, calls into question the long-time practice of prescribing calcium to lower phosphate levels in patients with chronic kidney disease. The researchers suggest some of the calcium is absorbed into the blood stream and may expedite hardening of the arteries, ...

Disney Researchers develop software tools to create physical versions of virtual characters

2013-07-19
Achieving a desired motion in an animated physical character, whether it be a small toy or a full-sized figure, demands highly specialized engineering skills. But research teams at Disney Research have created a pair of software packages that can open the design process to people with a broader spectrum of skills and provide more creative choices. One set of software tools can take a drawing of an articulated character and produce a type of animation that pre-dates video and film – gear-driven mechanical characters, such as a dancing clock, a galloping horse or a Sisyphean ...

Disney researchers use encoded audio signals to provide 'second screen' experiences at most venues

2013-07-19
Providing a "second screen" experience for audiences at movie theaters, stadiums and other public venues need not require a special wireless infrastructure. Instead, a system developed by Disney Research, Zürich, uses the venue's regular sound system to transmit text, games or other information to smartphones using only an audio signal. The smartphones carried by many audience members provide not only a means for viewing content that supplements a movie or sporting event, but comprise an ad hoc microphone network that helps transmit the content among all of the participants ...

LAST 30 PRESS RELEASES:

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor

NIH to lead implementation of National Plan to End Parkinson’s Act

Growth of private equity and hospital consolidation in primary care and price implications

Online advertising of compounded glucagon-like peptide-1 receptor agonists

[Press-News.org] Haste and waste on neuronal pathways
Bio Engineering