(Press-News.org) ANN ARBOR—In events that could exacerbate sea level rise over the coming decades, stretches of ice on the coasts of Antarctica and Greenland are at risk of rapidly cracking apart and falling into the ocean, according to new iceberg calving simulations from the University of Michigan.
"If this starts to happen and we're right, we might be closer to the higher end of sea level rise estimates for the next 100 years," said Jeremy Bassis, assistant professor of atmospheric, oceanic and space sciences at the U-M College of Engineering, and first author of a paper on the new model published in the current issue of Nature Geoscience.
Iceberg calving, or the formation of icebergs, occurs when ice chunks break off larger shelves or glaciers and float away, eventually melting in warmer waters. Although iceberg calving accounts for roughly half of the mass lost from ice sheets, it isn't reflected in any models of how climate change affects the ice sheets and could lead to additional sea level rise, Bassis said.
"Fifty percent of the total mass loss from the ice sheets, we just don't understand. We essentially haven't been able to predict that, so events such as rapid disintegration aren't included in those estimates," Bassis said. "Our new model helps us understand the different parameters, and that gives us hope that we can better predict how things will change in the future."
The researchers have found the physics at the heart of iceberg calving, and their model is the first that can simulate the different processes that occur on both ends of the Earth. It can show why in northern latitudes—where glaciers rest on solid ground—icebergs tend to form in relatively small, vertical slivers that rotate onto their sides as they dislodge. It can also illustrate why in the southernmost places—where vast ice shelves float in the Antarctic Ocean—icebergs form in larger, more horizontal plank shapes.
The model treats ice sheets—both floating shelves and grounded glaciers—like loosely cemented collections of boulders. Such a description reflects how scientists in the field have described what iceberg calving actually looks like. The model allows those loose bonds to break when the boulders are pulled apart or rub against one another.
The simulations showed that calving is a two-step process driven primarily by the thickness of the ice.
"Essentially, everything is driven by gravity," Bassis said. "We identified a critical threshold of one kilometer where it seems like everything should break up. You can think of it in terms of a kid building a tower. The taller the tower is, the more unstable it gets."
Icebergs do have a tendency to form before that threshold though, Bassis suspects, due to cracks that are already there—either formed when capsizing bergs crash into the water and send shockwaves through the surrounding ice, or when melted water on the surface cuts through. The former is believed to have led to the Helheim Glacier collapse in 2003. The glacier had begun to retreat slowly in 2002, but suddenly gave way the following year when the thinner ice had broken away, exposing a thicker ice coast.
The latter—melted water pools—are occurring more frequently due to climate change, and they're believed to have played a role in the rapid disintegration of the Antarctica's Larsen B ice shelf, which crumbled over about six weeks in 2002.
When the researchers added random cracks to their model, it could mirror both Helheim and Larsen B.
A third feature is also required for the most dramatic ice collapses to occur. Icebergs can't float away and make room for more icebergs to break off the main sheet unless the system has access to open water. So areas that border deep, unobstructed ocean rather than fjords or other waterways are at greater risk of rapid ice loss. The researchers point to the Thwaites and Pine Island glaciers in Antarctica and the Jakobshavn Glacier in Greenland, which is already retreating rapidly, as places vulnerable to "catastrophic disintegration" because they have all three components.
"The ice in those places gets thicker as you go back. If our threshold is right, then if these places start to retreat as you expose the thicker calving font, they're susceptible to catastrophic breakup," Bassis said.
Retreat of the current ice coasts in these places areas could occur via melting or iceberg calving.
###
The paper is titled "Diverse calving patterns linked to glacier geometry." The research was funded by the National Science Foundation and NASA.
Abstract of paper: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1887.html
Jeremy Bassis: http://aoss.engin.umich.edu/people/jbassis
Sea level rise: New iceberg theory points to areas at risk of rapid disintegration
2013-07-22
ELSE PRESS RELEASES FROM THIS DATE:
Ancient ice melt unearthed in Antarctic mud
2013-07-22
Global warming five million years ago may have caused parts of Antarctica's large ice sheets to melt and sea levels to rise by approximately 20 metres, scientists report today in the journal Nature Geoscience.
The researchers, from Imperial College London, and their academic partners studied mud samples to learn about ancient melting of the East Antarctic ice sheet. They discovered that melting took place repeatedly between five and three million years ago, during a geological period called Pliocene Epoch, which may have caused sea levels to rise approximately ten metres.
Scientists ...
Sex chromosome shocker: The 'female' X a key contributor to sperm production
2013-07-22
CAMBRIDGE, Mass. -- Painstaking new analysis of the genetic sequence of the X chromosome—long perceived as the "female" counterpart to the male-associated Y chromosome—reveals that large portions of the X have evolved to play a specialized role in sperm production.
This surprising finding, reported by Whitehead Institute scientists in a paper published online this week in the journal Nature Genetics, is paired with another unexpected outcome: despite its reputation as the most stable chromosome of the genome, the X has actually been undergoing relatively swift change. ...
Study links mental illness to early death in people with epilepsy
2013-07-22
People with epilepsy are ten times more likely to die early, before their mid-fifties, compared with the general population, according to a 41 year study in Sweden published today in the Lancet and part-funded by the Wellcome Trust.
The findings reveal a striking correlation between premature death and mental illness in these patients and people with epilepsy were four times more likely to have received a psychiatric diagnosis in their lifetime compared with the general population.
The figures are considerably higher than previously thought and have important implications ...
Making big 'Schroedinger cats'
2013-07-22
Since Erwin Schroedinger's famous 1935 cat thought experiment, physicists around the globe have tried to create large scale systems to test how the rules of quantum mechanics apply to everyday objects.
Researchers at the University of Calgary recently made a significant step forward in this direction by creating a large system that is in two substantially different states at the same time. Until this point, scientists had only managed to recreate quantum effects on much smaller scales.
Professor Alex Lvovsky and associate professor Christoph Simon from the Physics and ...
A bad alliance: Rare immune cells promote food-induced allergic inflammation in the esophagus
2013-07-22
PHILADELPHIA – Food is an integral part of life; but, for some, it can be harmful. Allergic inflammation caused by inappropriate immune responses to some types of food has become a major public health issue. Over the past ten years, the prevalence of food allergies has increased by nearly 20 percent, affecting an estimated six million people in the U.S.
Eosinophilic esophagitis (EoE) is a food allergy-associated disease that affects children and adults and is caused by inflammation in response to such trigger foods as eggs, nuts, milk, wheat, and soy. Inflammation of ...
Common stem cell in heart and lung development explains adaption for life on land
2013-07-22
PHILADELPHIA – The evolution of adaptations for life on land have long puzzled biologists – are feathers descendents of dinosaur scales, how did arms and legs evolve from fins, and from what ancient fish organ did the lung evolve?
Biologists have known that the co-development of the cardiovascular and pulmonary systems is a recent evolutionary adaption to life outside of water, coupling the function of the heart with the gas exchange function of the lung. And, the lung is one of the most recent organs to have evolved in mammals and is arguably the most vital for terrestrial ...
A flip of the mitotic spindle has disastrous consequences for epithelial cells
2013-07-22
VIDEO:
Stowers investigators use genetics and live cell imaging to illuminate molecular mechanisms that position the cell division machinery in growing tissues.
Click here for more information.
KANSAS CITY, MO—Constructing a body is like building a house—if you compromise structural integrity, the edifice can collapse. Nowhere is that clearer on a cellular level than in the case of epithelial sheets, single layers of cells that line every body cavity from the gut to mammary ...
Current efforts will not save the world's most endangered cat
2013-07-22
Almost 100 million euros has been spent so far on conservation efforts for the last 250 remaining Iberian lynxes in the wild. But the charismatic species is likely to go extinct within 50 years because the current management plans do not account for the effects of climate change. If they did, the population might increase instead concludes a new international study with participation from the Centre for Macroecology, Evolution and Climate at the University of Copenhagen. The study highlights the importance of integrating climate models in management plans for biodiversity.
"Our ...
Paper-thin e-skin responds to touch by lighting up
2013-07-22
BERKELEY — A new milestone by engineers at the University of California, Berkeley, can help robots become more touchy-feely, literally.
A research team led by Ali Javey, UC Berkeley associate professor of electrical engineering and computer sciences, has created the first user-interactive sensor network on flexible plastic. The new electronic skin, or e-skin, responds to touch by instantly lighting up. The more intense the pressure, the brighter the light it emits.
"We are not just making devices; we are building systems," said Javey, who also has an appointment as ...
A first in front line immunity research
2013-07-22
Monash University researchers have gained new insight into the early stages of our immune response, providing novel pathways to develop treatments for diseases from multiple sclerosis to cancer.
In a study published today in Nature Immunology, a team of researchers led by Professor Paul Hertzog, of the Monash Institute of Medical Research (MIMR) and Professor Jamie Rossjohn, of the School of Biomedical Sciences, have characterised for the first time how interferon beta (IFNβ) proteins bind to cells and activate an immune response.
Produced when viral and bacterial ...