PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Ghost glaciers and cosmic trips: New GSA Bulletin postings for July 2013

2013-07-26
(Press-News.org) Boulder, Colo., USA – July 2013 GSA Bulletin postings cover the solid Earth's influence on the sea; the diverging geologic histories of the North America Cordillera; "ghost glaciers" in Greenland; the Picuris Orogeny, New Mexico, USA; the Corner Brook Lake Block in the Appalachian orogen of western Newfoundland; the Cryogenian Perry Canyon Formation in Utah, USA; geochronology of the Bighorn Basin of Wyoming, USA; and "A cosmic trip: 25 years of cosmogenic nuclides in geology."

GSA BULLETIN articles published ahead of print are online at http://gsabulletin.gsapubs.org/content/early/recent; abstracts are open-access at http://gsabulletin.gsapubs.org/. Representatives of the media may obtain complimentary copies of articles by contacting Kea Giles.

Sign up for pre-issue publication e-alerts at http://www.gsapubs.org/cgi/alerts for first access to new journal content as it is posted. Subscribe to RSS feeds at http://gsabulletin.gsapubs.org/rss/.

Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GSA Bulletin in your articles or blog posts. Contact Kea Giles for additional information or assistance.

Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.

The solid Earth's influence on sea level
Clinton P. Conrad, Dept. of Geology & Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii at Mānoa, Honolulu, Hawaii 96822, USA. Posted online 1 July 2013; http://dx.doi.org/10.1130/B30764.1.

Sea level lies at the intersection of Earth's solid, liquid, and gaseous components, and thus forms a fundamental boundary on our planet that affects both biology and geology. Human society must adjust to changes in this boundary, which is now rising 2-3 mm per year. Although climatological factors such as seawater warming and glacial melting are major contributors to sea level rise, deformation of the solid earth also exerts an important, and often dominating, influence on sea level. Over decades, the movement of mass from glaciers to oceans drives ground surface deformations that cause rates of sea level change to vary from place to place. Over thousands of years, the solid earth responds to past deglaciations, causing slow but large sea level adjustments. Over millions of years, plate tectonics, sedimentation and seafloor volcanism have driven a slow sea level drop of 150-300 meters, but with a coastal expression that depends on local patterns of tectonic uplift and subsidence. Over billions of years, ocean water is probably lost to larger reservoirs stored within the earth's deep interior. Understanding these solid earth processes is essential to predicting patterns of future sea level change, some of which will impact society significantly.

Strain partitioning in accretionary orogens, and its effects on orogenic collapse: Insights from western North America
Steve A. Israel et al., Yukon Geological Survey, 2099 2nd Avenue, Whitehorse, Yukon Y1A 1B5, Canada. Posted online 1 July 2013; http://dx.doi.org/10.1130/B30777.1.

Mountain belts around the world have been viewed as the products of the interaction between two or more tectonic plates throughout time. However, how the mountain belts react to these changes is only part of the story. In the case of the western North American Cordillera, a portion of the mountain belt underwent diverging geologic histories approximately 80 million years ago. This divergence was created by a change in how the mountain belt accommodated deformation along its axis. A portion of the belt continued to rise and another transferred deformation into strike-slip faults. This variation in deformation regimes led to a change in the overall geologic architecture. As the belt evolved, the portion that continued to rise became gravitationally unstable eventually leading to large-scale collapse of the mountain belt. The portion of the belt that underwent strike-slip deformation stayed stable, with only small regions of the underlying crust being exposed through extension related to the strike-slip faults. Through examination of the Cordilleran mountain belt, Steve A. Israel and colleagues are able to determine that the way in which mountain belts throughout the world evolve depend not only on the changing tectonic plate interactions, but also on the geologic architecture of the belts themselves.

Constraining landscape history and glacial erosivity using paired cosmogenic nuclides in Upernavik, northwest Greenland
Lee B. Corbett et al., Dept. of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA; and Dept. of Geology, University of Vermont, Burlington, Vermont 05405, USA. Posted online 23 July 2013; http://dx.doi.org/10.1130/B30813.1.

The evolution of landscapes in the high Arctic is a complex process that takes place over long timescales and by multiple mechanisms. Here, Lee B. Corbett and colleagues investigate the age and history of the landscape in northwestern Greenland in order to understand how it has evolved over time and how effectively glaciers have shaped it. They use beryllium-10 and aluminum-26, two rare isotopes that are produced in rocks when they are exposed to bombardment by high-energy cosmic rays from space. By quantifying the concentrations of these two isotopes, they make inferences about how much time the landscape has spent buried beneath glacial ice versus how much time it has spent exposed. Corbett and colleagues conclude that the landscape in Upernavik is very old; some locations preserve a record of almost one million years. This contrasts greatly with many other landscapes in Greenland, which date back only to about 10,000 years ago (the end of the last glacial period). They also conclude that the land surfaces in Upernavik have been preserved beneath non-erosive glacial ice throughout many glacial periods over the course of geologic time. These so-called "ghost glaciers" cover the landscape but are incapable of eroding it, leaving behind no geologic evidence of their presence.

Detrital zircon evidence for non-Laurentian provenance, Mesoproterozoic (ca. 1490 Ma) deposition and orogenesis in a reconstructed orogenic belt, northern New Mexico, USA: Defining the Picuris orogeny
Christopher G. Daniel et al., Dept. of Geology, Bucknell University, Lewisburg, Pennsylvania 17837, USA. Posted online 23 July 2013; http://dx.doi.org/10.1130/B30804.1.

Geochronological results from igneous and detrital zircon show that the Proterozoic Pilar and Piedra Lumbre Formations exposed in the Picuris Mountains, New Mexico, USA, were deposited between about 1500 and 1460 million years ago, some 200 million years younger than previously thought. Following deposition, these rocks and older Paleoproterozoic units were buried in the middle crust and experienced regional metamorphism and deformation at conditions near 550 degrees Celsius, 0.4 Gpa. Previous workers attributed this metamorphism and deformation to the approx. 1650 million-year-old Mazatzal Orogeny. According to Christopher G. Daniel and colleagues, this interpretation is no longer viable. The deposition of sediments at about 1500-1450 million years ago followed by regional metamorphism, deformation and significant regional magmatism are the hallmarks of an orogenic event that Daniel and colleagues propose to call the Picuris Orogeny. This orogenic belt extends east across the Truchas Peaks and Rio Mora areas and to the west across the Tusas Mountains and likely extends further to the southwest and is broadly correlative with the Mesoproterozoic Yankee Joe/Blackjack formations in Arizona. The Picuris Orogeny may reflect either intracratonic tectonic processes, or alternatively, may be associated with the accretion of the Mazatzal crustal province in the Mesoproterozoic, ca. 1500 to ca. 1400 million years ago.

The Corner Brook Lake block in the Newfoundland Appalachians: A suspect terrane along the Laurentian margin and evidence for large-scale orogen-parallel motion
Shoufa Lin et al., Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. Posted online 23 July 2013; http://dx.doi.org/10.1130/B30805.1.

Isotopic dating and geological data indicate that the Corner Brook Lake Block, a geological entity in the Appalachian orogen of western Newfoundland, has unique characteristics. Rocks of about 1.0 billion years old, which are typical for the western margin of the Appalachian orogen, are absent. The block also has a distinct geological history from about 470 to 430 million years ago. Available evidence indicates that the block has moved 400 km or more parallel to the orogeny. The recognition of large-scale orogeny-parallel motion indicates that presently neighboring geological blocks might have been far apart and thus has significant implications for tectonic interpretation of the Appalachian orogeny.

Stratigraphic, geochronologic, and geochemical record of the Cryogenian Perry Canyon Formation, northern Utah: Implications for Rodinia rifting and snowball Earth glaciation
E.A. Balgord et al. (corresponding author Adolph Yonkee), Dept. of Geosciences, University of Arizona, Tucson, Arizona 85721, USA. Posted online 23 July 2013; http://dx.doi.org/10.1130/B30860.1.

The Cryogenian Period (800-635 million years ago) represents a time of profound and interrelated global tectonic, climatic, and biologic changes, involving the breakup of the supercontinent Rodinia, extreme glaciations, and a drastic turnover in the diversity and morphology of life on Earth. The Cryogenian Perry Canyon Formation of northern Utah contains diamictite- and volcanic-bearing strata that record glacial events and an early phase of rifting along the western margin of Laurentia. Sedimentologic, geochronologic, and geochemical information from the formation and overlying strata provide important insights on the paleogeographic evolution of western Laurentia. Detailed analyses of strata reveal a distinct change from narrow fault-bound basins with local sediment sources and associated basalt, trachyte, and rhyolite volcanism, to a regionally integrated, slowly subsiding basin with distal and recycled sediment sources, recording evolution from an active rift to a passive margin setting. Maximum depositional ages of diamictite and locally preserved cap carbonate in the Perry Canyon Formation are consistent with two glacial events at older than 710 million years and about 685 to 670 million years, interpreted to be correlative with glacial deposits preserved on other continents.

Detrital zircon geochronology from the Bighorn Basin, Wyoming, USA: Implications for tectonostratigraphic evolution and paleogeography
Steven R. May et al., ExxonMobil Upstream Research Company, P.O. Box 2189, Houston, Texas 77252, USA. Posted online 23 July 2013; http://dx.doi.org/10.1130/B30824.1.

Radiometric ages from zircon grains within the Bighorn Basin of Wyoming provide a record of sediment origin and dispersal for the past 510 million years. More than 4,000 new ages reported in this paper provide a fingerprint of where the grains that make up Cambrian through Eocene sedimentary rocks in the basin originated, were transported, and deposited. These data provide one of the most complete records of detrital zircon age distributions from this part of North America. Patterns recognized within these data reflect the evolution of northwest Wyoming through a series of tectonic and paleogeographic environments. Detrital zircon ages from certain parts of the stratigraphic record provide evidence for linkages between ancient plate tectonic processes along the margin of North America and sedimentation on the continent. During these times, detrital zircons provide a potentially useful tool for determining the ages of sedimentary rocks.

A cosmic trip: 25 years of cosmogenic nuclides in geology
Darryl E. Granger et al., Dept. of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA. Posted online 23 July 2013; http://dx.doi.org/10.1130/B30774.1.

Terrestrial cosmogenic nuclides, produced by secondary cosmic-ray interactions in the atmosphere and in situ within minerals in the shallow lithosphere, are widely used to date surface exposure of rocks and sediments, to estimate erosion and weathering rates, and to date sediment deposition or burial. Their use has transformed geomorphology and Quaternary geology, for the first time allowing landforms to be dated and denudation rates to be measured over soil-forming time scales. The application of cosmogenic nuclides to geology began soon after the invention of accelerator mass spectrometry (AMS) in 1977 and increased dramatically with the measurement of in situ–produced nuclides in mineral grains near Earth's surface in the 1980s. The past 25 years have witnessed the development of cosmogenic nuclides from their initial detection to their prevalence today as a standard geochronological and geochemical tool. This review by Darryl E. Granger and colleagues covers the major developments of the past 25 years by comparing the state of the field in 1988 with that of today, and by identifying key advances in that period that moved the field forward. Granger and colleagues emphasize the most commonly used in situ-produced nuclides measured by AMS for geological applications, but also discuss other nuclides where their applications overlap. Their review covers AMS instrumentation, cosmogenic nuclide production rates, the methods of surface exposure dating, measurement of erosion and weathering, and burial dating, and meteoric 10Be.

### http://www.geosociety.org



ELSE PRESS RELEASES FROM THIS DATE:

Scientists ID compounds that target amyloid fibrils in Alzheimer's, other brain diseases

2013-07-26
UCLA chemists and molecular biologists have for the first time used a "structure-based" approach to drug design to identify compounds with the potential to delay or treat Alzheimer's disease, and possibly Parkinson's, Lou Gehrig's disease and other degenerative disorders. All of these diseases are marked by harmful, elongated, rope-like structures known as amyloid fibrils, linked protein molecules that form in the brains of patients. Structure-based drug design, in which the physical structure of a targeted protein is used to help identify compounds that will interact ...

Global warming to cut snow water storage 56 percent in Oregon watershed

2013-07-26
CORVALLIS, Ore. – A new report projects that by the middle of this century there will be an average 56 percent drop in the amount of water stored in peak snowpack in the McKenzie River watershed of the Oregon Cascade Range - and that similar impacts may be found on low-elevation maritime snow packs around the world. The findings by scientists at Oregon State University, which are based on a projected 3.6 degree Fahrenheit temperature increase, highlight the special risks facing many low-elevation, mountainous regions where snow often falls near the freezing point. In ...

Traditional forest management reduces fungal diversity

2013-07-26
There is a shortage of dead wood in forests because fallen branches and trees tend to be cleared away. This wood, if available, ought to be decomposing, as it is the habitat of many living beings like lignicolous fungi. These fungi are capable of decomposing dead wood and turning it into organic and inorganic matter. So clearing away the dead wood from the forests is ecologically harmful for the fungi. Nerea Abrego-Antia and Isabel Salcedo-Larralde, biologists in the Department of Plant Biology and Ecology of the UPV/EHU-University of the Basque Country, have recently quantified ...

Quantum of sonics: Bonded, not stirred

2013-07-26
Researchers at McGill University have discovered a new way to join materials together using ultrasound. Ultrasound – sound so high it cannot be heard – is normally used to smash particles apart in water. In a recent study, the team of researchers, led by McGill professor Jake Barralet, from the faculties of Dentistry and Medicine, found that if particles were coated with phosphate, they could instead bond together into strong agglomerates, about the size of grains of sand. Their results are published in the journal Advanced Materials. Nanoparticles are extremely useful ...

Inherited virus can cause cognitive dysfunction and fatigue

2013-07-26
Tampa, FL (July 25, 2013) -- Many experts believe that chronic fatigue syndrome (CFS) has several root causes including some viruses. Now, lead scientists Shara Pantry, Maria Medveczky and Peter Medveczky of the University of South Florida's Morsani College of Medicine, along with the help of several collaborating scientists and clinicians, have published an article in the Journal of Medical Virology suggesting that a common virus, Human Herpesvirus 6 (HHV-6), is the possible cause of some CFS cases. Over 95 percent of the population is infected with HHV-6 by age 3, ...

Database simplifies finding Canadian plant names and distribution

2013-07-26
Environmental consultants, research ecologists, nature conservation agencies, city managers, translators, and many others, all need to put names to plants at one time or another. The sources used often are not scientifically up-to-date, making it difficult to figure out the accepted name or proper vernacular to use in a vast country like Canada. The VASCAN database simplifies this task for all users. The database content was developed by a team of botanists led by Dr. Luc Brouillet, a specialist of the Canadian flora, curator of the Marie-Victorin Herbarium, and a researcher ...

Researchers find new way to create 'gradients' for understanding molecular interactions

2013-07-26
Scientists use tools called gradients to understand how molecules interact in biological systems. Researchers from North Carolina State University have developed a new technique for creating biomolecular gradients that is both simpler than existing techniques and that creates additional surface characteristics that allow scientists to monitor other aspects of molecular behavior. A gradient is a material that has a specific molecule on its surface, with the concentration of the molecule sloping from a high concentration on one end to a low concentration at the other end. ...

A new coral reef species from the Gambier Islands, French Polynesia

2013-07-26
The new species Echinophyllia tarae is described from the remote and poorly studied Gambier Islands, French Polynesia. Although the new species is common in the lagoon of Gambier Islands, its occurrence elsewhere is unknown. Echinophyllia tarae lives in protected reef habitats and was observed between 5 and 20 m depth. It is a zooxanthellate species which commonly grows on dead coral fragments, which are also covered by crustose coralline algae and fleshy macroalgae. This species can grow on well illuminated surfaces but also encrusts shaded underhangs and contributes ...

Overactive immune response blocks itself

2013-07-26
This news release is available in German. As part of the innate immune system natural killer cells (NK cells) play an important role in immune responses. For a long time they have been known as the first line of defense in the fight against infectious diseases. Therefore, researchers assumed that the body needs as many active NK cells as possible. However, scientists at the Helmholtz Centre for Infection Research (HZI) have now shown that the principle "the more the better" does not apply to this type of immune cells. "During certain phases of the immune response ...

Gold nanoparticles improve photodetector performance

2013-07-26
WASHINGTON D.C. -- The mineral molybdenum disulfide (MoS2), which, when solid, behaves in many ways like grease, has semiconducting properties that make it a promising alternative to silicon or graphene in electronic devices. It also strongly absorbs visible light, and so it has been widely employed in light-sensing photodetectors, which are used in a wide range of technologies, such as environmental sensing, process control in factories, and optical communication devices. Researchers at the National University of Singapore have now found a way to boost the performance ...

LAST 30 PRESS RELEASES:

Understanding bias and discrimination in AI: Why sociolinguistics holds the key to better Large Language Models and a fairer world 

Safe and energy-efficient quasi-solid battery for electric vehicles and devices

Financial incentives found to help people quit smoking, including during pregnancy

Rewards and financial incentives successfully help people to give up smoking

HKU ecologists reveal key genetic insights for the conservation of iconic cockatoo species

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

[Press-News.org] Ghost glaciers and cosmic trips: New GSA Bulletin postings for July 2013