(Press-News.org) The slightest variation in a sequence of DNA can have profound effects. Modern genomics has shown that just one mutation can be the difference between successfully treating a disease and having it spread rampantly throughout the body.
Now, researchers have developed a new method that can look at a specific segment of DNA and pinpoint a single mutation, which could help diagnose and treat diseases such as cancer and tuberculosis. These small changes can be the root of a disease or the reason some infectious diseases resist certain antibiotics. The findings were published online this week (July 28) in the journal Nature Chemistry.
"We've really improved on previous approaches because our solution doesn't require any complicated reactions or added enzymes, it just uses DNA," said lead author Georg Seelig, a University of Washington assistant professor of electrical engineering and of computer science and engineering. "This means that the method is robust to changes in temperature and other environmental variables, making it well-suited for diagnostic applications in low-resource settings."
DNA is a type of nucleic acid, the biological molecule that gives all living things their unique genetic signatures. In a double strand of DNA, known as a double helix, a series of base pairs bond and encode our genetic information. As genomics research has progressed, it's clear that a change of just one base pair – a sequence mutation, an insertion or a deletion – is enough to trigger major biological consequences. This could explain the onset of disease, or the reason some diseases don't respond to usual antibiotic treatment.
Take, for example, tuberculosis – a disease that's known to have drug-resistant strains. Its resistance to antibiotics often is due to a small number of mutations in a specific gene. If a person with tuberculosis isn't responding to treatment, it's likely because there is a mutation, Seelig said.
Now, researchers have the ability to check for that mutation preventatively.
Seelig, along with David Zhang of Rice University and Sherry Chen, a UW doctoral student in electrical engineering, designed probes that can pick out mutations in a single base pair in a target stretch of DNA. The probes allow researchers to look in much more detail for variations in long sequences – up to 200 base pairs – while current methods can detect mutations in stretches of up to only 20.
"In terms of specificity, our research suggests that we can do quadratically better, meaning that whatever the best level of specificity, our best will be that number squared," said Zhang, an assistant professor of bioengineering at Rice University.
The testing probes are designed to bind with a sequence of DNA that is suspected of having a mutation. The researchers do this by creating a complimentary sequence of DNA to the double-helix strand in question. Then, they allow molecules containing both sequences to mix in a test tube in salt water, where they naturally will match up to one another if the base pairs are intact. Unlike previous technologies, the probe molecule checks both strands of the target double helix for mutations rather than just one, which explains the increased specificity.
The probe is engineered to emit a fluorescent glow if there's a perfect match between it and the target. If it doesn't illuminate, that means the strands didn't match and there was in fact a mutation in the target strand of DNA.
The researchers have filed a patent on the technology and are working with the UW Center for Commercialization. They hope to integrate it into a paper-based diagnostic test for diseases that could be used in parts of the world with few medical resources.
INFORMATION:
The research was funded by the National Institutes of Health, the National Science Foundation and the Department of Defense's Advanced Research Projects Agency.
For more information, contact Seelig at gseelig@uw.edu.
Breakthrough in detecting DNA mutations could help treat tuberculosis, cancer
2013-07-29
ELSE PRESS RELEASES FROM THIS DATE:
Speed limit set for ultrafast electrical switch
2013-07-29
Researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have clocked the fastest-possible electrical switching in magnetite, a naturally magnetic mineral. Their results could drive innovations in the tiny transistors that control the flow of electricity across silicon chips, enabling faster, more powerful computing devices.
Scientists using SLAC's Linac Coherent Light Source (LCLS) X-ray laser found that it takes only 1 trillionth of a second to flip the on-off electrical switch in samples of magnetite, which is thousands of times faster ...
Molecular robots can help researchers build more targeted therapeutics
2013-07-29
Many drugs such as agents for cancer or autoimmune diseases have nasty side effects because while they kill disease-causing cells, they also affect healthy cells. Now a new study has demonstrated a technique for developing more targeted drugs, by using molecular "robots" to hone in on more specific populations of cells.
"This is a proof of concept study using human cells," said Sergei Rudchenko, Ph.D., director of flow cytometry at Hospital for Special Surgery (HSS) in New York City and a senior author of the study. "The next step is to conduct tests in a mouse model ...
Water molecules control inactivation and recovery of potassium channels
2013-07-29
Just 12 molecules of water cause the long post-activation recovery period required by potassium ion channels before they can function again. Using molecular simulations that modeled a potassium channel and its immediate cellular environment, atom for atom, University of Chicago scientists have revealed this new mechanism in the function of a nearly universal biological structure, with implications ranging from fundamental biology to the design of pharmaceuticals. Their findings were published online July 28 in Nature.
"Our research clarifies the nature of this previously ...
Higher cancer incidences found in regions near refineries and plants that release benzene
2013-07-29
The incidence of a particular type of blood cancer is significantly higher in regions near facilities that release the chemical benzene into the environment. That is the conclusion of a new study published early online in CANCER, a peer-reviewed journal of the American Cancer Society. This and other studies like it will be critical to identifying and enacting public health policies to decrease or prevent cancer.
Non-Hodgkin lymphoma has been on the rise over the past few decades as industrial production in the United States has expanded. Benzene is one chemical carcinogen ...
Living longer, living healthier
2013-07-29
A new study, conducted by David Cutler, the Otto Eckstein Professor of Applied Economics, shows that, even as life expectancy has increased over the past two decades, people have become increasingly healthier later in life.
"With the exception of the year or two just before death, people are healthier than they used to be," Cutler said. "Effectively, the period of time in which we're in poor health is being compressed until just before the end of life. So where we used to see people who are very, very sick for the final six or seven years of their life, that's now far ...
Keeping your balance
2013-07-29
It happens to all of us at least once each winter in Montreal. You're walking on the sidewalk and before you know it you are slipping on a patch of ice hidden under a dusting of snow. Sometimes you fall. Surprisingly often you manage to recover your balance and walk away unscathed. McGill researchers now understand what's going on in the brain when you manage to recover your balance in these situations. And it is not just a matter of good luck.
Prof. Kathleen Cullen and her PhD student Jess Brooks of the Dept of Physiology have been able to identify a distinct and surprisingly ...
Impaired visual signals might contribute to schizophrenia symptoms
2013-07-29
By observing the eye movements of schizophrenia patients while playing a simple video game, a University of British Columbia researcher has discovered a potential explanation for some of their symptoms, including difficulty with everyday tasks.
The research, published in a recent issue of the Journal of Neuroscience, shows that, compared to healthy controls, schizophrenia patients had a harder time tracking a moving dot on the computer monitor with their eyes and predicting its trajectory. But the impairment of their eye movements was not severe enough to explain the ...
Intent to harm: Willful acts seem more damaging
2013-07-29
How harmful we perceive an act to be depends on whether we see the act as intentional, reveals new research published in Psychological Science, a journal of the Association for Psychological Science.
The new research shows that people significantly overestimate the monetary cost of intentional harm, even when they are given a financial incentive to be accurate.
"The law already recognizes intentional harm as more wrong than unintentional harm," explain researchers Daniel Ames and Susan Fiske of Princeton University. "But it assumes that people can assess compensatory ...
UT Southwestern researchers identify novel mechanism that helps stomach bug cause illness
2013-07-29
DALLAS – July 29, 2013 – A seafood contaminant that thrives in brackish water during the summer works like a spy to infiltrate cells and quickly open communication channels to sicken the host, researchers at UT Southwestern Medical Center report.
Vibrio parahaemolyticus bacteria, which cause gastroenteritis, inject proteins called effectors into host cells. One of those effectors, VopQ, almost immediately starts to disrupt the important process of autophagy via a novel channel-forming mechanism, the scientists report in the investigation available online at the Proceedings ...
HIV-associated lymphoma survival has not improved during the antiretroviral therapy era
2013-07-27
Stable survival rates were observed for HIV-associated lymphoma patients during the antiretroviral therapy (ART) era in the US, according to a new study published July 26 in the Journal of the National Cancer Institute.
Studies have shown that HIV infection increases the risk of non-Hodgkin lymphoma (NHL) and Hodgkin lymphoma (HL) and that incidence for many lymphoma types has not decreased in the ART era. Furthermore, lymphoma is the most frequent cancer-related cause of death among HIV-infected persons. However, trends in presentation and survival have not been investigated ...