(Press-News.org) In 2011, Nature announced that scientists had discovered a single-celled organism that is a primitive farmer. The organism, a social amoeba called Dictyostelium discoideum, picks up edible bacteria, carries them to new locations and harvests them like crops.
D. discoideum enjoyed a brief spell in the media spotlight, billed as the world's smallest farmer.
Now a collaboration of scientists at Washington University in St. Louis and Harvard University has taken a closer look at one lineage, or clone, of a D. discoideum farmer.
This farmer carries not one but two strains of bacteria. One strain is the "seed corn" for a crop of edible bacteria, and the other strain is a weapon that produces defensive chemicals.
The edible bacteria, the scientists found, evolved from the toxic one. The two strains differ by many mutations but a single key mutation, which hit an important controller in the genome of the nonfood strain, alters expression of 10 percent of its genome. This alteration increases the expression of some genes and decreases the expression of others.
A mutation that affects this much of a genome could be lethal, but in this case it had the surprising effect of making the bacterium edible by changing its chemical profile.
The discovery is reported in the July 29 issue of the Proceedings of the National Academy of Sciences.
The first farmer
The first farmers were found by Debra Brock, then a graduate student in the laboratory run by David Queller and Joan Strassmann at Rice University in Houston, Texas. (All three scientists have since moved to Washington University in St. Louis, where Queller and Strassmann are professors of biology and Brock is a research scientist.)
Brock, who had worked for years with the standard axenic (pure, or uncontaminated) lab clone, noticed something strange about the D. discoideum in the Queller/Strassmann lab, which had been collected from the wild.
When she looked at wild D. discoideum clones under a microscope, she saw bacteria in the sori of some clones. Oddly it was always the same clones that carried bacteria. The bacteria caught her attention because she had never seen anything like this in the lab clone.
"As I tell the students, it's all about the details," Brock says.
A fancy farmer
Whenever she found a D. discoideum clone carrying bacteria, Brock tried to isolate the bacteria. This was a bit hit or miss, she explains, because many organisms that live in the soil cannot be grown in the lab.
Eventually she found a champion D. discoideum: a farmer clone from which she was able to isolate two strains of bacteria. At least the strains looked different when they were cultured in a dish.
She sent the two bacteria out to be identified genetically and both came back as Pseudomonas fluorescens: the same species, even though they were morphologically so different.
"It was a bit of a puzzle," Brock said. On top of that one of the two morphs was edible and the other was not, and the edible one was the first edible strain she had isolated that wasn't a lab feedstock.
"So, I now had two bacteria that seemed the same and one was a food and the other wasn't," Brock said. "That was really odd.".
Toting guns and butter
When the farmer paper appeared in Nature, Jon Clardy of the Harvard Medical School in Boston noticed a passing reference to the D. discoideum farmer with two hitchhikers in the supplement section of the paper. Clardy, who studies the chemistry of mutualism, contacted the Queller/Strassmann lab to suggest the two labs collaborate to unravel the interactions among the newly discovered threesome.
Brock sent the bacteria to Harvard, where Pierre Stallforth, a postdoctoral associate in the Clardy lab, grew them in liquid media. He sent extracts from the media back to Brock, who tested them on D. discoideum to see if they were active.
"Ultimately Pierre figured out that the nonfood strain was producing two chemicals: chromene and pyrrolnitrin. And excitingly, chromene is a new compound," Strassmann said.
"We determined chromene increases spore production in the farmer strain and suppresses spore formation in the nonfarmer strain," she explained. "We saw the same increases in the farmer and decreases in the non-farmer with pyrrolnitrin. A known antibiotic and antifungal, pyrrolnitrin probably also suppresses other organisms in the soil that might compete with the farmer strain."
Assays showed that it was not merely the absence of chromene and pyrrolnitrin that made the food bacterium edible. Something else is going on as well.
Why become butter?
Stallforth next sequenced the entire genome of the two bacterial strains to look for mutations that might explain the differences between them.
The genes responsible for producing pyrrolnitrin were intact in both strains. So he looked at the genes for a two-part global activator that regulates the pyrrolnitrin pathway, among many other genes.
Sure enough, there was a mutation in one of the controller genes of the food bacterium that turned it off and broke the controller. As shown by others in a previous study, breaking the controller changed the expression of 10 percent of the bacteria's genome.
"That's pretty cool, but then you still don't really know for sure if that mutation is the one that matters," Strassmann said.
To check, Stallforth artificially broke the controller — and only the controller — in the nonedible P. fluorescens bacterium. The knockout strain he created had the same chemical profile as the food bacterium and it, too, was edible.
Had a similar mutation in the evolutionary past created the edible strain? To answer that question, the scientists constructed a family tree of P. fluorescens clones in the Strassmann/Queller lab by comparing 20 genes.
"It turns out that of all the bacteria strains we've ever isolated, the two we collected from the D. discoideum farmer clone Brock discovered are the most closely related, Queller said.
"The tree also tells us that edibility is a derived trait. These guys used to be inedible and became edible. That's just a weird thing to evolve: to be able to eaten," Queller said.
It makes sense only because it benefits kin, more of whom will be carried to new locations by the well-fed farmer D. discoideum clone, the scientists said.
It's altruism, ultimately. Altruism in miniature.
INFORMATION:
Social amoebae travel with a posse
Tiny single-celled organisms have amazingly complicated social lives
2013-07-30
ELSE PRESS RELEASES FROM THIS DATE:
Understanding why male mammals choose monogamy
2013-07-30
In perhaps the most comprehensive and definitive effort to date, scientists have explained the processes that drove male mammals to adopt social monogamy as a breeding strategy.
Because male mammals have a much higher potential to produce offspring in a single breeding season than do their female counterparts (who must endure long gestation periods), it would seem that mating with one female per cycle would be limiting. Yet a percentage of mammalian males do this -- and researchers have debated why, seeking to identify selective advantages social monogamy offers, for ...
Natural affinities -- unrecognized until now -- may have set stage for life to ignite
2013-07-30
The chemical components crucial to the start of life on Earth may have primed and protected each other in never-before-realized ways, according to new research led by University of Washington scientists.
It could mean a simpler scenario for how that first spark of life came about on the planet, according to Sarah Keller, UW professor of chemistry, and Roy Black, UW affiliate professor of bioengineering, both co-authors of a paper published online July 29 in the Proceedings of the National Academy of Sciences.
Scientists have long thought that life started when the right ...
New modular vaccine design combines best of existing vaccine technologies
2013-07-30
Boston, Mass.—A new method of vaccine design, called the Multiple Antigen Presentation System (MAPS), may result in vaccines that bring together the benefits of whole-cell and acellular or defined subunit vaccination. The method, pioneered by researchers at Boston Children's Hospital, permits rapid construction of new vaccines that activate mulitple arms of the immune system simultaneously against one or more pathogens, generating robust immune protection with a lower risk of adverse effects.
As reported by Fan Zhang, PhD, Ying-Jie Lu, PhD, and Richard Malley, MD, from ...
Capturing black hole spin could further understanding of galaxy growth
2013-07-30
Astronomers have found a new way of measuring the spin in supermassive black holes, which could lead to better understanding about how they drive the growth of galaxies.
The scientists at Durham University, UK, observed a black hole - with mass 10 million times that of our Sun - at the centre of a spiral galaxy 500 million light years from Earth while it was feeding on the surrounding disc of material that fuels its growth and powers its activity.
By viewing optical, ultra-violet and soft x-rays generated by heat as the black hole fed, they were able to measure how ...
Could sleeping stem cells hold key to treatment of aggressive blood cancer?
2013-07-30
Scientists studying an aggressive form of leukaemia have discovered that rather than displacing healthy stem cells in the bone marrow as previously believed, the cancer is putting them to sleep to prevent them forming new blood cells.
The finding offers the potential that these stem cells could somehow be turned back on, offering a new form of treatment for the condition, called Acute Myeloid Leukaemia (AML). The work was led by scientists at Queen Mary, University of London with the support of Cancer Research UK's London Research Institute.
Around 2,500* people are diagnosed ...
Pulsating star sheds light on exoplanet
2013-07-30
A team of researchers has devised a way to measure the internal properties of stars—a method that offers more accurate assessments of their orbiting planets.
The research, which appears in Proceedings of the National Academy of Sciences, was conducted by a multi-national team of scientists, including physicists at New York University, Princeton University, and the Max Planck Institute for Solar System Research.
The researchers examined HD 52265—a star approximately 92 light years away and nearly 20 percent more massive than our Sun. More than a decade ago, scientists ...
Essential clue to Huntington's disease solution found by McMaster researchers
2013-07-30
Hamilton, ON -- Researchers at McMaster University have discovered a solution to a long-standing medical mystery in Huntington's disease (HD).
HD is a brain disease that can affect 1 in about 7,000 people in mid-life, causing an increasing loss of brain cells at the centre of the brain. HD researchers have known what the exact DNA change is that causes Huntington's disease since 1993, but what is typically seen in patients does not lead to disease in animal models. This has made drug discovery difficult.
In this week's issue of the science journal, the Proceedings of ...
Monogamy evolved as a mating strategy
2013-07-30
Social monogamy, where one breeding female and one breeding male are closely associated with each other over several breeding seasons, appears to have evolved as a mating strategy, new research reveals. It was previously suspected that social monogamy resulted from a need for extra parental care by the father.
The comparative study, by University of Cambridge researchers Dieter Lukas and Tim Clutton-Brock, shows that the ancestral system for all mammalian groups is of females living in separate ranges with males defending overlapping territories, and that monogamy evolved ...
Are you hiring the wrong person?
2013-07-30
UNIVERSITY OF CALIFORNIA, BERKELEY'S HAAS SCHOOL OF BUSINESS –Have you ever applied for a job and wondered why it is offered to someone who appears to be less qualified than you? A new study by Berkeley-Haas Associate Professor Don Moore finds employment managers tend to ignore the context of past performance.
The article, "Attribution Errors in Performance Evaluation," (PLOS ONE, July 24, 2013), is co-authored by Samuel A. Swift, a Berkeley-Haas post-doctoral fellow; Zachariah S. Sharek, director of strategy and innovation at CivicScience; and Francesco Gino, associate ...
EARTH: A journey through Cuba's culture and geology
2013-07-30
Alexandria, VA – Few destinations capture the imagination like Cuba; a forbidden fruit to U.S. citizens since the 1960s. Recently, 14 earth scientists from the U.S.-based Association for Women Geoscientists travelled there to explore its geology and culture.
The expedition is chronicled in the August issue of EARTH Magazine. While Cuba is an intriguing destination as an actor on the global political stage, its geological history captures events that tell scientists even more about the history of the planet.
While there, the scientists studied rocks that captured the ...
LAST 30 PRESS RELEASES:
Exercise as an anti-ageing intervention to avoid detrimental impact of mental fatigue
UMass Amherst Nursing Professor Emerita honored as ‘Living Legend’
New guidelines aim to improve cystic fibrosis screening
Picky eaters by day, buffet by night: Butterfly, moth diets sync to plant aromas
Pennington Biomedical’s Dr. Leanne Redman honored with the E. V. McCollum Award from the American Society for Nutrition
CCNY physicists uncover electronic interactions mediated via spin waves
Researchers’ 3D-printing formula may transform future of foam
Nurture more important than nature for robotic hand
Drug-delivering aptamers target leukemia stem cells for one-two knockout punch
New study finds that over 95% of sponsored influencer posts on Twitter were not disclosed
New sea grant report helps great lakes fish farmers navigate aquaculture regulations
Strain “trick” improves perovskite solar cells’ efficiency
How GPS helps older drivers stay on the roads
Estrogen and progesterone stimulate the body to make opioids
Dancing with the cells – how acoustically levitating a diamond led to a breakthrough in biotech automation
Machine learning helps construct an evolutionary timeline of bacteria
Cellular regulator of mRNA vaccine revealed... offering new therapeutic options
Animal behavioral diversity at risk in the face of declining biodiversity
Finding their way: GPS ignites independence in older adult drivers
Antibiotic resistance among key bacterial species plateaus over time
‘Some insects are declining but what’s happening to the other 99%?’
Powerful new software platform could reshape biomedical research by making data analysis more accessible
Revealing capillaries and cells in living organs with ultrasound
American College of Physicians awards $260,000 in grants to address equity challenges in obesity care
Researchers from MARE ULisboa discover that the European catfish, an invasive species in Portugal, has a prolonged breeding season, enhancing its invasive potential
Rakesh K. Jain, PhD, FAACR, honored with the 2025 AACR Award for Lifetime Achievement in Cancer Research
Solar cells made of moon dust could power future space exploration
Deporting immigrants may further shrink the health care workforce
Border region emergency medical services in migrant emergency care
Resident physician intentions regarding unionization
[Press-News.org] Social amoebae travel with a posseTiny single-celled organisms have amazingly complicated social lives