(Press-News.org) July 30, 2013, Boston, Mass. -- Sun-drenched rooms make for happy residents, but large glass windows also bring higher air-conditioning bills. Now a bioinspired microfluidic circulatory system for windows developed by researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University could save energy and cut cooling costs dramatically -- while letting in just as much sunlight.
The same circulatory system could also cool rooftop solar panels, allowing them to generate electricity more efficiently, the researchers report in the July 29 online edition of Solar Energy Materials and Solar Cells.
The circulatory system functions like those of living animals, including humans, which contain an extensive network of tiny blood vessels near the surface of the skin that dilate when we are hot. This allows more blood to circulate, which promotes heat transfer through our skin to the surrounding air.
Similarly, the new window-cooling system contains an extensive network of ultrathin channels near the "skin" of the window -- the pane -- through which water can be pumped when the window is hot. The channels consist of long, narrow troughs that are molded into a thin sheet of clear silicone rubber that, when stretched over a flat pane of glass, create sealed channels.
"The water comes in at a low temperature, runs next to a hot window, and carries that thermal energy away," said Benjamin Hatton, Ph.D., lead author of the study. Hatton, who is now an assistant professor of materials science and engineering at the University of Toronto, was a member of the Advanced Technology Team at the Wyss Institute. He worked on the Adaptive Material Technologies platform led by Joanna Aizenberg, Ph.D., who is a Core Faculty member of the Wyss Institute and the Amy Smith Berylson Professor of Materials Science at Harvard School of Engineering and Applied Sciences.
Today's insulation and construction methods do a good job keeping heat from leaking through walls, but heat transfer through glass windows remains one of the major stumbling blocks to energy-efficient buildings. In large part, that is because the molecules in glass absorb the sun's infrared light, heating the window, which heats the air inside the building significantly.
The idea to cool glass windows when they get hot emerged from work on microfluidics by Don Ingber, M.D., Ph.D., the Wyss Institute's Founding Director, and his team working on biomimetic microsystems. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at Harvard School of Engineering and Applied Sciences.
Microfluidic devices circulate fluids through tiny, ultrathin channels and are typically used to build small devices for laboratory research and clinical diagnosis. In contrast, Ingber's team developed an innovative method to build large-scale microfluidic devices for organ-on-chip applications. They first use a vinyl cutter -- a computer-controlled device that cuts intricate patterns on large vinyl sheets -- to create a plastic mold. Then they pour liquid silicone rubber into the mold, let it solidify, and remove it, which creates the thin sheet imbued with long, narrow troughs.
When Ingber's microfluidics team met with Aizenberg's adaptive materials team in cross-platform meetings, the idea emerged that this microfluidics technology could be applied to building materials to control heat transfer, much like capillary blood flow warms the feet of Antarctic penguins as they wait for their mates near the South Pole.
Hatton and the Wyss Institute team then created and tested a four-inch-square microfluidic windowpane. They found that when these channels were filled with water, they were also transparent to the eye -- which is just what people want in a window, Hatton said.
They then used a heat lamp to heat a pane with this vasculature to 100 F -- as hot as a window might get on a sunny summer day. Using a special infrared camera, they showed that the circulatory system could readily cool the pane.
The Wyss Institute team then worked with Matthew Hancock, an applied mathematician at the Broad Institute in Cambridge, Mass., who developed a mathematical model that predicts how the circulatory system would perform on normal-size windows. Pumping just half a soda can's worth of water through the window's circulatory system would cool a full-size window pane by a full 8 C (14 F), they calculated. The energy needed to pump water would be far less than the heat energy the water absorbed. This suggested that installing the cooled windows throughout a building would generate a big net win.
"The idea of using nature's lesson to create kind of a living skin on a building is a very important and promising direction for how buildings should and will be constructed in the future," said Chuck Hoberman, an award-winning U.S. designer, expert in adaptive architecture, and Wyss Institute Visiting Scholar.
"Our new window technology marries advances in microfluidics with creative thinking about adaptive architecture, and it's the sort of cross-disciplinary research that the Wyss Institute was designed to foster," Ingber said. "We are optimistic that microfluidic windows will go a long way toward helping us cool our homes and commercial buildings more efficiently."
Next, the researchers plan to team up with architecture researchers to meld their mathematical model with existing architectural energy-modeling software to see how much energy microfluidic windows would save if installed over an entire building.
INFORMATION:
This work was funded by the Wyss Institute. In addition to Hatton, Aizenberg, Ingber and Hancock, the research team included: Ian Wheeldon, Ph.D., a former Wyss postdoctoral researcher who's currently an assistant professor in the department of chemical and environmental engineering at the University of California, Riverside, and Matthias Kolle, Ph.D., a postdoctoral fellow on Aizenberg's team.
About the Wyss Institute for Biologically Inspired Engineering at Harvard University
The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard's Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University and Tufts University, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups. The Wyss Institute recently won the prestigious World Technology Network award for innovation in biotechnology.
Lifelike cooling for sunbaked windows
Adaptable microfluidic circulatory system could cut air-conditioning costs
2013-07-30
ELSE PRESS RELEASES FROM THIS DATE:
How superbug spreads among regional hospitals: A domino effect
2013-07-30
Washington, DC, July 30, 2013 – A moderate increase in vancomycin-resistant enterococci (VRE) at one hospital can lead to a nearly 3 percent increase in VRE in every other hospital in that county, according to a study in the August issue of the American Journal of Infection Control, the official publication of the Association for Professionals in Infection Control and Epidemiology (APIC).
VRE is one of the most common bacteria that cause infections in healthcare facilities.
Researchers from the Johns Hopkins Bloomberg School of Public Health, Pittsburgh Supercomputing ...
Study: Taxing sugary beverages not a clear cut strategy to reduce obesity
2013-07-30
RESEARCH TRIANGLE PARK, N.C. – Taxing sugary beverages may help reduce calories, but the health benefits may be offset as consumers substitute other unhealthy foods, according to a joint study by researchers at RTI International, Duke University, and the U.S. Department of Agriculture.
The study, published in the American Journal of Agricultural Economics, found that the reduction in sugary beverages due to a soda tax would likely lead consumers to substitute those calories by increasing their calorie, salt and fat intake from untaxed foods and beverages.
"Instituting ...
Exercise may be the best medicine for Alzheimer's disease
2013-07-30
College Park, Md. –New research out of the University of Maryland School of Public Health shows that exercise may improve cognitive function in those at risk for Alzheimer's by increasing the efficiency of brain activity associated with memory. Memory loss associated with Alzheimer's disease is one of the greatest fears among older Americans. While some memory loss is normal and to be expected as we age, a diagnosis of mild cognitive impairment, or MCI, signals more substantial memory loss and a greater risk for Alzheimer's, for which there currently is no cure.
The ...
Inhalable gene therapy may help pulmonary arterial hypertension patients
2013-07-30
The deadly condition known as pulmonary arterial hypertension (PAH), which afflicts up to 150,000 Americans each year, may be reversible by using an inhalable gene therapy, report an international team of researchers led by investigators at the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai.
In their new study, reported in the July 30 issue of the journal Circulation, scientists demonstrated that gene therapy administered through a nebulizer-like inhalation device can completely reverse PAH in rat models of the disease. In the lab, researchers ...
AGU journal highlights -- July 30, 2013
2013-07-30
The following highlights summarize research papers that have been recently published in Geophysical Research Letters (GRL) and Journal of Geophysical Research-Solid Earth (JGR-B).
In this release:
1. Atmospheric rivers linked to severe precipitation in Western Europe
2. Warming climate increases rainfall extremes
3. Carbon fertilization increased arid region leaf cover over past 20 years
4. Understanding the complexities of volcanoes that erupt just once
5. Revealing the early seafloor spreading history between India and Australia
6. Independent observations corroborate ...
Water clears path for nanoribbon development
2013-07-30
HOUSTON – (July 30, 2013) – New research at Rice University shows how water makes it practical to form long graphene nanoribbons less than 10 nanometers wide.
And it's unlikely that many of the other labs currently trying to harness the potential of graphene, a single-atom sheet of carbon, for microelectronics would have come up with the technique the Rice researchers found while they were looking for something else.
The discovery by lead author Vera Abramova and co-author Alexander Slesarev, both graduate students in the lab of Rice chemist James Tour, appears online ...
Lessons from combat care helped save lives and limbs after Boston bombing, reports
2013-07-30
Philadelphia, Pa. -- Collaboration across surgical specialties and lessons from combat casualty care—especially the use of tourniquets and other effective strategies to control bleeding—helped mount an effective surgical response to aid victims of the Boston Marathon bombings, according to a special editorial in the July issue of The Journal of Craniofacial Surgery, which is led by Editor-in-Chief Mutaz B. Habal, MD, and published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
The experience of surgeons treating victims of the Boston bombings at Brigham ...
Full body illusion is associated with a drop in skin temperature
2013-07-30
Researchers from the Center for Neuroprosthetics at the Swiss Federal Institute of Technology (EPFL), Switzerland, show that people can be "tricked" into feeling that an image of a human figure -- an "avatar" -- is their own body. The study is published in the open-access journal Frontiers in Behavioral Neuroscience.
Twenty-two volunteers underwent a Full Body Illusion when they were stroked with a robotic device system while they watched an avatar being stroked in the same spot. The study is the first to demonstrate that Full Body Illusions can be accompanied by changes ...
Doctors urged to talk to patients about parking cellphones
2013-07-30
(Edmonton) Family physicians regularly counsel patients about medical risks associated with heart disease, stroke, diabetes and smoking, and a team from the University of Alberta wants to add cellphone use and driving to the discussion.
Talking on a cellphone while driving raises the risk of collision by four to six times—comparable to getting behind the wheel while under the influence, studies show. Addressing the problem requires educating the public about the risks, and a good place to start is in the doctor's office.
"The evidence is clear and compelling. Epidemiologic, ...
Protein surfaces defects act as drug targets
2013-07-30
New research shows a physical characterisation of the interface of the body's proteins with water. Identifying the locations where it is easiest to remove water from the interface of target proteins could constitute a novel drug design strategy. The candidate drugs would need to be engineered to bind at the site of the protein where interfacial water is most easily dislodged. These findings, based on the work of María Belén Sierra from the National University of the South, in Bahia Blanca, Argentina and colleagues, were recently published in EPJ E.
The challenge is to ...
LAST 30 PRESS RELEASES:
Development of a novel modified selective medium cefixime–tellurite-phosphate-xylose-rhamnose MacConkey agar for isolation of Escherichia albertii and its evaluation with food samples
KIST develops full-color-emitting upconversion nanoparticle technology for color displays with ultra-high color reproducibility
Towards a fully automated approach for assessing English proficiency
Increase in alcohol deaths in England an ‘acute crisis’
Government urged to tackle inequality in ‘low-carbon tech’ like solar panels and electric cars
Moffitt-led international study finds new drug delivery system effective against rare eye cancer
Boston stroke neurologist elected new American Academy of Neurology president
Center for Open Science launches collaborative health research replication initiative
Crystal L. Mackall, MD, FAACR, recognized with the 2025 AACR-Cancer Research Institute Lloyd J. Old Award in Cancer Immunology
A novel strategy for detecting trace-level nanoplastics in aquatic environments: Multi-feature machine learning-enhanced SERS quantification leveraging the coffee ring effect
Blending the old and the new: Phase-change perovskite enable traditional VCSEL to achieve low-threshold, tunable single-mode lasers
Enhanced photoacoustic microscopy with physics-embedded degeneration learning
Light boosts exciton transport in organic molecular crystal
On-chip multi-channel near-far field terahertz vortices with parity breaking and active modulation
The generation of avoided-mode-crossing soliton microcombs
Unlocking the vibrant photonic realm: A new horizon for structural colors
Integrated photonic polarizers with 2D reduced graphene oxide
Shouldering the burden of how to treat shoulder pain
Stevens researchers put glycemic response modeling on a data diet
Genotype-to-phenotype map of human pelvis illuminates evolutionary tradeoffs between walking and childbirth
Pleistocene-age Denisovan male identified in Taiwan
KATRIN experiment sets most precise upper limit on neutrino mass: 0.45 eV
How the cerebellum controls tongue movements to grab food
It’s not you—it’s cancer
Drug pollution alters migration behavior in salmon
Scientists decode citrus greening resistance and develop AI-assisted treatment
Venom characteristics of a deadly snake can be predicted from local climate
Brain pathway links inflammation to loss of motivation, energy in advanced cancer
Researchers discover large dormant virus can be reactivated in model green alga
New phase of the immune response uncovered
[Press-News.org] Lifelike cooling for sunbaked windowsAdaptable microfluidic circulatory system could cut air-conditioning costs