PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Rensselaer researchers identify cause of LED 'efficiency droop'

Newly described mechanism could lead to stronger LEDs for more widespread use

2013-07-31
(Press-News.org) Troy, N.Y. – Rensselaer Polytechnic Institute researchers have identified the mechanism behind a plague of LED light bulbs: a flaw called "efficiency droop" that causes LEDs to lose up to 20 percent of their efficiency as they are subjected to greater electrical currents. Efficiency droop, first reported in 1999, has been a key obstacle in the development of LED lighting for situations, like household lighting, that call for economical sources of versatile and bright light.

In a paper recently published in Applied Physics Letters, the researchers identify a phenomena known as "electron leakage" as the culprit. The research offers the first comprehensive model for the mechanism behind efficiency droop, and may lead to new technologies to solve the problem, said E. Fred Schubert, the Wellfleet Senior Constellation Professor of Future Chips at Rensselaer, founding director of the university's National Science Foundation-funded Smart Lighting Engineering Research Center, and senior author on the study.

"In the past, researchers and LED manufacturers have made progress in reducing efficiency droop, but some of the progress was made without understanding what causes the droop," said Schubert. "I think now we have a better understanding of what causes the droop and this opens up specific strategies to address it."

Light-emitting diodes take advantage of the fact that high-energy electrons emit photons, i.e. particles of light, as they move from a higher to a lower energy level. The light-emitting diode is constructed of three sections: an "n-type" section of crystal that is loaded with negatively charged electrons; a p-type section of crystal that contains many positively charged "holes;" and a section in between the two called the "quantum well" or "active region."

David Meyaard, first author on the study and a doctoral student in electrical engineering, explains that electrons are injected into the active region from the n-type material as holes are injected into the active region from the p-type material. The electrons and holes move in opposite directions and, if they meet in the active region, they recombine, at which point the electron moves to a lower state of energy and emits a photon of light. Unfortunately, researchers have noticed that as more current is applied, LEDs lose efficiency, producing proportionally less light as the current is increased.

Meyaard said the team's research shows that, under the "high current regime," an electric field develops within the p-type region of the diode, allowing electrons to escape the active region where they would otherwise recombine with holes and emit photons of light. This phenomenon, known as "electron leakage," was first proposed more than five years ago, but Meyaard said the team's research is the first incontrovertible evidence that it is the cause behind efficiency droop. Meyaard said the team identified the electric field as it began to build up, and showed that, after a sufficiently strong field is built up, the electrons escape out of the active region.

"We measure excellent correlation between the onset of field-buildup and the onset of droop," said Meyaard. "This is clear evidence that the mechanism is electron leakage, and we can describe it quantitatively. For example, in one key result reported in the paper, we show the onset of high injection and the onset of droop and you can see that they are very nicely correlated. And that was just not possible in the past because there was really no theoretical model that described how electron leakage really works."

Schubert said their work shows that because electrons have a greater "mobility" than holes, the diode is made from disparate types of carriers.

"If the holes and the electrons had similar properties, there is a symmetry; both would meet in the middle, where the quantum well is, and there they recombine," said Schubert. "What we have instead is a material system where the electrons are much more mobile than the holes. And because they are very mobile, they diffuse more easily, they also react more easily to an electric field. Because of that asymmetry, or disparity, we have a propensity of the electrons to 'shoot over' and to be extracted from the quantum well. And so they don't meet the hole in the active region and so they don't emit light."

Meyaard and Schubert said the team has now turned their attention to developing a new structure for LEDs, based on the model, which they look forward to introducing.

INFORMATION:

The paper, published in the June 27 edition of Applied Physics Letters, is titled "Identifying the cause of the efficiency droop in GaInN light-emitting diodes by correlating the onset of high injection with the onset of the efficiency droop."

END



ELSE PRESS RELEASES FROM THIS DATE:

Reprogramming patients' cells offers powerful new tool for studying, treating blood diseases

2013-07-31
First produced only in the past decade, human induced pluripotent stem cells (iPSCs) are capable of developing into many or even all human cell types. In new research, scientists reprogrammed skin cells from patients with rare blood disorders into iPSCs, highlighting the great promise of these cells in advancing understanding of those challenging diseases—and eventually in treating them. "The technology for generating these cells has been moving very quickly," said hematologist Mitchell J. Weiss, M.D., Ph.D., corresponding author of two recent studies led by The Children's ...

American Chemical Society podcast: Cotton is an eco-friendly way to clean up oil spills

2013-07-31
The latest episode in the American Chemical Society's (ACS') award-winning Global Challenges/Chemistry Solutions podcast series describes a report demonstrating that unprocessed, raw cotton has an amazing ability to sop up oil while also being eco-friendly. Based on a report by Seshadri Ramkumar, Ph.D., in the ACS journal Industrial & Engineering Chemistry Research, the new podcast is available without charge at iTunes and from http://www.acs.org/globalchallenges. In light of the 2010 Deepwater Horizon disaster, Ramkumar notes that a particular need exists for oil-spill ...

Cracking how life arose on earth may help clarify where else it might exist

2013-07-31
Does life exist elsewhere or is our planet unique, making us truly alone in the universe? Much of the work carried out by NASA, together with other research institutions, is aimed at trying to come to grips with this question. A novel and potentially testable theory of how life arose on earth, first advanced more than 25 years ago by Michael Russell, a research scientist in Planetary Chemistry and Astrobiology at the NASA Jet Propulsion Laboratory, was further developed in a recent paper published in Philosophical Transactions of the Royal Society B (PTRSL-B)—the world's ...

Study finds evidence of nerve damage in around half of fibromyalgia patients

2013-07-31
About half of a small group of patients with fibromyalgia – a common syndrome that causes chronic pain and other symptoms – was found to have damage to nerve fibers in their skin and other evidence of a disease called small-fiber polyneuropathy (SFPN). Unlike fibromyalgia, which has had no known causes and few effective treatments, SFPN has a clear pathology and is known to be caused by specific medical conditions, some of which can be treated and sometimes cured. The study from Massachusetts General Hospital (MGH) researchers will appear in the journal Pain and has been ...

Sequestration and fuel reserves

2013-07-31
A technique for trapping the greenhouse gas carbon dioxide deep underground could at the same be used to release the last fraction of natural gas liquids from ailing reservoirs, thus offsetting some of the environmental impact of burning fossil fuels. So says a paper to be published in the peer-reviewed International Journal of Oil, Gas and Coal Technology. While so-called "fracking" as a method for extracting previously untapped fossil fuel reserves has been in the headlines recently, there are alternatives to obtaining the remaining quantities of hydrocarbons from gas/condensate ...

Santa's workshop not flooded -- but lots of melting in the Arctic

2013-07-31
Santa's workshop at the North Pole is not under water, despite recent reports. A dramatic image captured by a University of Washington monitoring buoy reportedly shows a lake at the North Pole. But Santa doesn't yet need to buy a snorkel. "Every summer when the sun melts the surface the water has to go someplace, so it accumulates in these ponds," said Jamie Morison, a polar scientist at the UW Applied Physics Laboratory and principal investigator since 2000 of the North Pole Environmental Observatory. "This doesn't look particularly extreme." After media coverage in ...

Simulations aiding study of earthquake dampers for structures

2013-07-31
Writer: Emil Venere, (765) 494-4709, venere@purdue.edu Sources: Shirley Dyke, 765-494-7434, sdyke@purdue.edu Related Web sites: NEES: http://www.nees.org PHOTO CAPTION: Earthquake-engineering researches at the Harbin Institute of Technology in China work to set up a structure on a shake table for experiments to study the effects of earthquakes. Purdue University civil engineering students are working with counterparts at the institute to study the reliability of models for testing a type of powerful damping system that might be installed in buildings and bridges ...

Planetary 'runaway greenhouse' more easily triggered, research shows

2013-07-31
It might be easier than previously thought for a planet to overheat into the scorchingly uninhabitable "runaway greenhouse" stage, according to new research by astronomers at the University of Washington and the University of Victoria published July 28 in the journal Nature Geoscience. In the runaway greenhouse stage, a planet absorbs more solar energy than it can give off to retain equilibrium. As a result, the world overheats, boiling its oceans and filling its atmosphere with steam, which leaves the planet glowing-hot and forever uninhabitable, as Venus is now. One ...

Learning from a virus: Keeping genes under wraps

2013-07-31
An international collaboration of researchers including Felicia Goodrum of the University of Arizona's immunobiology department has studied how a human herpes virus carried by the majority of the population packages its genetic information during infection. The discoveries improve the chances of developing more targeted therapies in place of existing drugs, which do not always work or come with side effects. Experts estimate that 60 to 90 percent of the world's population carry the human cytomegalovirus, or CMV, which is one of the eight herpes viruses that infect humans. In ...

NASA sees little rainfall in Tropical Depression Flossie

2013-07-31
Tropical Storm Flossie weakened as it interacted with the Hawaiian Islands and became a depression. NASA's TRMM satellite saw mostly light rain and one isolated area of heavy rainfall within the storm after it weakened. All watches and warnings were dropped for the Hawaiian Islands on July 30. The Tropical Rainfall Measuring Mission, or TRMM, satellite flew over Flossie on July 30 at 07:17 UTC (3:17 a.m. EDT) and saw a small area of heavy rain west of the center of circulation. TRMM data showed that the rest of Flossie's rainfall was light to moderate. TRMM is managed ...

LAST 30 PRESS RELEASES:

Scientists can tell healthy and cancerous cells apart by how they move

Male athletes need higher BMI to define overweight or obesity

How thoughts influence what the eyes see

Unlocking the genetic basis of adaptive evolution: study reveals complex chromosomal rearrangements in a stick insect

Research Spotlight: Using artificial intelligence to reveal the neural dynamics of human conversation

Could opioid laws help curb domestic violence? New USF research says yes

NPS Applied Math Professor Wei Kang named 2025 SIAM Fellow

Scientists identify agent of transformation in protein blobs that morph from liquid to solid

Throwing a ‘spanner in the works’ of our cells’ machinery could help fight cancer, fatty liver disease… and hair loss

Research identifies key enzyme target to fight deadly brain cancers

New study unveils volcanic history and clues to ancient life on Mars

Monell Center study identifies GLP-1 therapies as a possible treatment for rare genetic disorder Bardet-Biedl syndrome

Scientists probe the mystery of Titan’s missing deltas

Q&A: What makes an ‘accidental dictator’ in the workplace?

Lehigh University water scientist Arup K. SenGupta honored with ASCE Freese Award and Lecture

Study highlights gaps in firearm suicide prevention among women

People with medical debt five times more likely to not receive mental health care treatment

Hydronidone for the treatment of liver fibrosis associated with chronic hepatitis B

Rise in claim denial rates for cancer-related advanced genetic testing

Legalizing youth-friendly cannabis edibles and extracts and adolescent cannabis use

Medical debt and forgone mental health care due to cost among adults

Colder temperatures increase gastroenteritis risk in Rohingya refugee camps

Acyclovir-induced nephrotoxicity: Protective potential of N-acetylcysteine

Inhibition of cyclooxygenase-2 upregulates the nuclear factor erythroid 2-related factor 2 signaling pathway to mitigate hepatocyte ferroptosis in chronic liver injury

AERA announces winners of the 2025 Palmer O. Johnson Memorial Award

Mapping minds: The neural fingerprint of team flow dynamics

Patients support AI as radiologist backup in screening mammography

AACR: MD Anderson’s John Weinstein elected Fellow of the AACR Academy

Existing drug has potential for immune paralysis

Soft brainstem implant delivers high-resolution hearing

[Press-News.org] Rensselaer researchers identify cause of LED 'efficiency droop'
Newly described mechanism could lead to stronger LEDs for more widespread use