(Press-News.org) AUSTIN, Texas — This summer, a radio navigation research team from The University of Texas at Austin set out to discover whether they could subtly coerce a 213-foot yacht off its course, using a custom-made GPS device.
Led by assistant professor Todd Humphreys of the Department of Aerospace Engineering and Engineering Mechanics at the Cockrell School of Engineering, the team was able to successfully spoof an $80 million private yacht using the world's first openly acknowledged GPS spoofing device. Spoofing is a technique that creates false civil GPS signals to gain control of a vessel's GPS receivers. The purpose of the experiment was to measure the difficulty of carrying out a spoofing attack at sea and to determine how easily sensors in the ship's command room could identify the threat.
The researchers hope their demonstration will shed light on the perils of navigation attacks, serving as evidence that spoofing is a serious threat to marine vessels and other forms of transportation. Last year, Humphreys and a group of students led the first public capture of a GPS-guided unmanned aerial vehicle (UAV), or drone, using a GPS device created by Humphreys and his students.
"With 90 percent of the world's freight moving across the seas and a great deal of the world's human transportation going across the skies, we have to gain a better understanding of the broader implications of GPS spoofing," Humphreys said. "I didn't know, until we performed this experiment, just how possible it is to spoof a marine vessel and how difficult it is to detect this attack."
In June, the team was invited aboard the yacht, called the White Rose of Drachs, while it traveled from Monaco to Rhodes, Greece, on the Mediterranean Sea. The experiment took place about 30 miles off the coast of Italy as the yacht sailed in international waters.
From the White Rose's upper deck, graduate students Jahshan Bhatti and Ken Pesyna broadcasted a faint ensemble of civil GPS signals from their spoofing device — a blue box about the size of a briefcase — toward the ship's two GPS antennas. The team's counterfeit signals slowly overpowered the authentic GPS signals until they ultimately obtained control of the ship's navigation system.
Unlike GPS signal blocking or jamming, spoofing triggers no alarms on the ship's navigation equipment. To the ship's GPS devices, the team's false signals were indistinguishable from authentic signals, allowing the spoofing attack to happen covertly.
Once control of the ship's navigation system was gained, the team's strategy was to coerce the ship onto a new course using subtle maneuvers that positioned the yacht a few degrees off its original course. Once a location discrepancy was reported by the ship's navigation system, the crew initiated a course correction. In reality, each course correction was setting the ship slightly off its course line. Inside the yacht's command room, an electronic chart showed its progress along a fixed line, but in its wake there was a pronounced curve showing that the ship had turned.
"The ship actually turned and we could all feel it, but the chart display and the crew saw only a straight line," Humphreys said.
After several such maneuvers, the yacht had been tricked onto a parallel track hundreds of meters from its intended one — the team had successfully spoofed the ship.
The experiment helps illustrate the wide gap between the capabilities of spoofing devices and what the transportation industry's technology can detect, Humphreys said.
Chandra Bhat, director of the Center for Transportation Research at The University of Texas at Austin, believes that the experiment highlights the vulnerability of the transportation sector to such attacks.
"The surprising ease with which Todd and his team were able to control a (multimillion) dollar yacht is evidence that we must invest much more in securing our transportation systems against potential spoofing," Bhat said.
It's important for the public and policymakers to understand that spoofing poses a threat that has far-reaching implications for transportation, Humphreys said.
"This experiment is applicable to other semi-autonomous vehicles, such as aircraft, which are now operated, in part, by autopilot systems," Humphreys said. "We've got to put on our thinking caps and see what we can do to solve this threat quickly."
###
As part of an ongoing research project, funding and travel expenses for this experiment was supported by UT Austin's Wireless Networking and Communications Group through the WNCG's Industrial Affiliates program.
YouTube: Watch an animation of the spoofing attack, titled "Spoofing on the High Seas." http://www.youtube.com/watch?v=ctw9ECgJ8L0
YouTube Video (includes footage from yacht): http://www.youtube.com/watch?v=YbWpFMXADAY
UT Austin researchers successfully spoof an $80 million yacht at sea
2013-07-31
ELSE PRESS RELEASES FROM THIS DATE:
Georgia Tech uncovers iOS security weaknesses
2013-07-31
Researchers from the Georgia Tech Information Security Center (GTISC) have discovered two security weaknesses that permit installation of malware onto Apple mobile devices using seemingly innocuous applications and peripherals, uncovering significant security threats to the iOS platform.
"Apple utilizes a mandatory app review process to ensure that only approved apps can run on iOS devices, which allows users to feel safe when using any iOS app," said GTISC Associate Director Paul Royal, also a research scientist in the College of Computing. "However, we have discovered ...
Sediment trapped behind dams makes them 'hot spots' for greenhouse gas emissions
2013-07-31
With the "green" reputation of large hydroelectric dams already in question, scientists are reporting that millions of smaller dams on rivers around the world make an important contribution to the greenhouse gases linked to global climate change. Their study, showing that more methane than previously believed bubbles out of the water behind small dams, appears in ACS' journal Environmental Science & Technology.
Andreas Maeck and colleagues point out that the large reservoirs of water behind the world's 50,000 large dams are a known source of methane. Like carbon dioxide, ...
Study offers promising new direction for organ regeneration and tissue repair
2013-07-31
BOSTON – Because most human tissues do not regenerate spontaneously, advances in tissue repair and organ regeneration could benefit many patients with a wide variety of medical conditions.
Now a research team led by investigators at Beth Israel Deaconess Medical Center (BIDMC) and Dana-Farber/Boston Children's Cancer and Blood Disorders Center has identified an entirely new approach to enhance normal tissue growth, a finding that could have widespread therapeutic applications.
Their findings were published on-line this week in the Proceedings of the National Academy ...
Chemical company giants stall with global economy
2013-07-31
The world's 50 largest chemical companies — with combined 2012 sales of almost $1 trillion and products that touch the lives of people everywhere — are the topic of the cover story in the current edition of Chemical & Engineering News. C&EN is the weekly newsmagazine of the American Chemical Society, the world's largest scientific society.
In C&EN's annual snapshot of the sales, profits, R&D spending and other indicators, Senior Correspondent Alexander Tullo points out that the Asian and Middle Eastern juggernauts that shot up the top 50 rankings during the past decade ...
New poll shows minority populations support clinical trials to improve health of others
2013-07-31
ALEXANDRIA, Va.—July 31, 2013—Altruism is a strong motivating factor for clinical trial participation in the general population and even more so among several minority groups. A significant percentage of African-Americans (61%), Hispanics (57%) and Asians (50%) say it's very important to participate as a volunteer in a clinical trial to improve the health of others, compared to 47% of non-Hispanic whites, according to a new national public opinion poll commissioned by Research!America.
These findings are tempered by the reality that participation remains disturbingly ...
3-D molecular syringes
2013-07-31
This news release is available in German. Abdominal pain, fever, diarrhoea -- these symptoms could point to an infection with the bacterium Yersinia. The bacterium's pathogenic potential is based on a syringe-like injection apparatus called injectisome. For the first time, an international team of researchers including scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, has unraveled this molecular syringe's spatial conformation. The researchers were able to demonstrate that the length of Yersinia's injectisome's basal body, which ...
VCU physicists discover theoretical possibility of large, hollow magnetic cage molecules
2013-07-31
Virginia Commonwealth University researchers have discovered, in theory, the possibility of creating large, hollow magnetic cage molecules that could one day be used in medicine as a drug delivery system to non-invasively treat tumors, and in other emerging technologies.
Approximately 25 years ago, scientists first made the discovery of C60 fullerene – better known as the Buckminster Fullerene – a molecule composed of 60 carbon molecules that formed a hollow cage. Due to its unique hollow cage structure the molecule offers serious technological potential because it could ...
Tiny, brightly shining silicon crystals could be safe for deep-tissue imaging
2013-07-31
BUFFALO, N.Y. — Tiny silicon crystals caused no health problems in monkeys three months after large doses were injected, marking a step forward in the quest to bring such materials into clinics as biomedical imaging agents, according to a new study.
The findings, published online July 10 in the journal ACS Nano, suggest that the silicon nanocrystals, known as quantum dots, may be a safe tool for diagnostic imaging in humans. The nanocrystals absorb and emit light in the near-infrared part of the spectrum, a quality that makes them ideal for seeing deeper into tissue ...
Robots strike fear in the hearts of fish
2013-07-31
Brooklyn, N.Y.—The latest in a series of experiments testing the ability of robots to influence live animals shows that bio-inspired robots can not only elicit fear in zebrafish, but that this reaction can be modulated by alcohol. These findings may pave the way for new methodologies for understanding anxiety and other emotions, as well as substances that alter them.
Maurizio Porfiri, associate professor of mechanical and aerospace engineering at the Polytechnic Institute of New York University (NYU-Poly) and Simone Macrì, a collaborator at the Istituto Superiore di Sanità ...
First experimental signs of a New Physics beyond the Standard Model
2013-07-31
The Standard Model, which has given the most complete explanation up to now of the universe, has gaps, and is unable to explain phenomena like dark matter or gravitational interaction between particles. Physicists are therefore seeking a more fundamental theory that they call "New Physics", but up to now there has been no direct proof of its existence, only indirect observation of dark matter, as deduced, among other things, from the movement of the galaxies.
A team of physicists formed by the professor of Physics at Universitat Autònoma de Barcelona (UAB) Joaquim Matias, ...