(Press-News.org) Most aircraft carrying Doppler radar look like they've grown a tail, developed a dorsal fin, or sprouted a giant pancake on their backs. But when the unmanned Global Hawk carries a radar system this summer, its cargo will be hard to see. The autonomous and compact High-altitude Imaging Wind and Rain Profiler, or HIWRAP, a dual-frequency conical-scanning Doppler radar, will hang under the aircraft's belly as it flies above hurricanes to measure wind and rain and to test a new method for retrieving wind data.
HIWRAP is one of the instruments that will fly in this summer's mission to explore Atlantic Ocean hurricanes. NASA's Hurricane and Severe Storm Sentinel, or HS3, airborne mission will investigate tropical cyclones using a number of instruments and two Global Hawks. The HS3 mission will operate between Aug. 20 and Sept. 23.
"Radar is an important remote sensor for atmospheric research," said Lihua Li, an engineer who helped develop HIWRAP at NASA's Goddard Space Flight Center in Greenbelt, Md. "Radar signals penetrate clouds and precipitation, allowing scientists to detect information on raindrops or ice particles." That information, he said, is one piece of the puzzle toward improving scientists' understanding of weather events.
This past year, Li and his colleagues further improved their radar technology to make it more effective at high altitudes. The ultimate goal is using radar to measure weather events from space.
Building a Better Radar
Before fully appreciating the team's accomplishments, it's important to understand how radar works. Under these systems, a transmitter sends a microwave pulse into the atmosphere. After it strikes a target, like a cloud particle, the microwave breaks apart into many return microwave frequencies, which then bounce back to the instrument. The returning microwave frequencies are different from the original pulse from the radar. From those differences, scientists can identify cloud particles as rain, ice or a mix. The returning microwave frequencies also reveal water content and the particles' size, shape, and distribution.
Radars send out several thousand of these pulses each second. The result is a three-dimensional image from the cloud top to the ground of what's going on inside storms and hurricanes.
To generate and send a rapid number of microwave pulses, radars generally need a lot of power. To have better sensitivity and accuracy, radars generally need big receiving antennas. But radars flying high above Earth's surface have strict limits on the size, weight, and power consumption of the instruments.
Engineers had to balance all these things against the science requirements for HIWRAP, which was designed to fly on the sleek Global Hawk. Since 2005, Li and Gerry Heymsfield, who leads Goddard's High Altitude Radar group, have pushed the design envelope with HIWRAP. They began with using compact transmitters that use less power, a digital receiver that gives them more flexibility to modify the outgoing microwave pulses, and a scanning antenna that widens HIWRAPs area of view below. Looking a bit like an upside-down golden flower, HIWRAP weighs in at about 300 pounds and has a footprint the size of a small washing machine.
But most significant are new advancements that push the boundary of radar capability both on long-endurance flights and at high altitudes. HIWRAP can measure the Doppler effect of moving ice particles and raindrops from 60,000 feet.
Blowing in the Wind
It's the setup of a classic physics problem. As a train thunders by a railroad crossing, its roar changes as it moves closer, zooms past and recedes away. At the crossing, the movement of the train running into or away from its own sound waves changes the sound's observed pitch, or frequency, in what's called a Doppler shift.
With a few measurements and equations, the Doppler shift of a frequency can reveal how fast the train is moving. Scientists interested in raindrops or other atmospheric particles use the same principle. Doppler radar sends out pulses of microwaves whose frequency will shift when they bounce off moving raindrops, and scientists can use this to figure out how fast ice or rain is moving in storms.
Detecting movement of rain and other precipitation tells scientists about another piece of the atmospheric puzzle — wind. "[With Doppler] we sense the motion of rain or ice particles in storm clouds," said Heymsfield, who has been working to improve high-altitude radar measurements for 20 years. "From that we can get the horizontal winds and the circulation in hurricanes."
Li noted that Doppler measurements also have been used to estimate the size of the rain or ice particles. Together with the wind data, HIWRAP provides data sets on tropical cyclones critically needed for improved understanding and forecasting these weather events.
While Doppler physics is straightforward, in reality it's very challenging. One difficulty is that the return frequencies from the target rainfall and clouds come back with a clutter of other things that also bounce back a signal, like the ground or ocean surface. To get the Doppler velocity of rain, for instance, you then have to separate all those signals.
An added complication arises when the radar is on an aircraft or a satellite. "The instrument itself is moving, so it also has Doppler information," Li said. "This makes the retrieval of rain or ice particle Doppler velocity extremely difficult." The aircraft has a high ground speed, which causes a wider range of frequencies to be returned from the targets and the magnitude of the Doppler shift to get bigger. This Doppler effect has to be distinguished from the Doppler effect of the cloud and rain target. Imagine trying to measure the velocity of a toy train with an instrument whizzing by on a full-sized train 12 miles away, the height of a high-altitude plane. Or, imagine taking measurements from 250 miles away -- the altitude of a satellite in space.
One way to get a better return signal from high-altitude aircraft is to send out more radar pulses, more quickly. HIWRAP sends out 5,000 pulses per second. For a satellite passing over the ground at about 12,000 mph, it's even more important to have a rapid series of pulses. But too many pulses per second can muddy the measurement if the returning Doppler-shifted frequencies overlap. Scientists need a way to distinguish which returning frequency corresponds with which emitted pulse. For HIWRAP's upcoming HS3 mission, Li and his team will test a method of putting an identifier on each outgoing microwave pulse.
He and his colleagues incorporated the necessary modifications to the outgoing radar pulses into HIWRAP's transmitter and receiver. While the technique has the potential to improve measurements on any Doppler radar, especially those on aircraft, its true impact will be on the next generation of precipitation satellite radars that will view rain worldwide every few hours. Currently, only two satellites carry radar in space and neither returns particle motion.
"Doppler implementation will be the next step," Li said. "That's what we are pushing for."
INFORMATION:
For more information about NASA's HS3 mission, visit:
http://www.nasa.gov/HS3
NASA seeing which way the wind blows
New Doppler radar takes flight on this summer's HS3 mission
2013-08-02
ELSE PRESS RELEASES FROM THIS DATE:
NASA sees Hurricane Gil being chased by developing storm
2013-08-02
On July 31, NASA's TRMM satellite saw Tropical Storm Gil intensifying and the storm became a hurricane. NASA's Aqua satellite and NOAA's GOES-15 satellite captured views of Gil on Aug. 1 as it was being chased by another developing tropical system.
The Atmospheric Infrared Sounder or AIRS instrument aboard NASA's Aqua satellite captured an infrared image of Hurricane Gil on August 1 at 10:11 UTC or 6:11 a.m. EDT. Strongest storms and heaviest rains appear around the center where cloud top temperatures exceed -63F/-52.
Microwave imagery on Aug. 1 from NASA's Aqua satellite ...
NASA looks at Tropical Storm Jebi in South China Sea
2013-08-02
Tropical Storm Jebi developed on July 31 and NASA satellite data on Aug. 1 shows the storm filling up at least half of the South China Sea.
The Atmospheric Infrared Sounder or AIRS instrument aboard NASA's Aqua satellite captured an infrared image of Tropical Storm Jebi on August 1 at 6:11 UTC or 2:11 a.m. EDT when it passed overhead from space. Strongest storms and heaviest rains appeared south of the center and in a large band of thunderstorms wrapping into the center from the southwest. Additionally, fragmented bands of thunderstorms are also east of the center of ...
Novel 3-D simulation technology helps surgical residents train more effectively
2013-08-02
Chicago, IL (August 1, 2013): A novel interactive 3-dimensional(3-D) simulation platform offers surgical residents a unique opportunity to hone their diagnostic and patient management skills, and then have those skills accurately evaluated according to a new study appearing in the August issue of the Journal of the American College of Surgeons. The findings may help establish a new tool for assessing and training surgical residents.
Previous research studies have shown that the management of patient complications following operations is an extremely important skill ...
ASTRO applauds new GAO report on physician self-referral abuse
2013-08-02
ASTRO Chairman Michael L. Steinberg, MD, FASTRO, called attention to the Government Accountability Office's (GAO) striking report released today, "Medicare: Higher Use of Costly Prostate Cancer Treatment by Providers Who Self-Refer Warrants Scrutiny," that details clear mistreatment of patients who trusted their physicians to care for their prostate cancer. Dr. Steinberg and radiation oncologists nationwide called on Congress to pass the "Promoting Integrity in Medicare Act of 2013" (PIMA), introduced earlier today by Rep. Jackie Speier (D-Calif.) and Rep. Jim McDermott ...
Climate science boost with tropical aerosols profile
2013-08-02
The seasonal influence of aerosols on Australia's tropical climate can now be included in climate models following completion of the first long-term study of fine smoke particles generated by burning of the savanna open woodland and grassland.
Australia's biomass burning emissions comprise about eight per cent of the global total, ranking third by continent behind Africa (48 per cent) and South America (27 per cent).
Lead researcher, CSIRO's Dr Ross Mitchell, said fine particles generated by burning of the tropical savanna of Northern Australia are a globally significant ...
How 'junk DNA' can control cell development
2013-08-02
Researchers from the Gene and Stem Cell Therapy Program at Sydney's Centenary Institute have confirmed that, far from being "junk", the 97 per cent of human DNA that does not encode instructions for making proteins can play a significant role in controlling cell development.
And in doing so, the researchers have unravelled a previously unknown mechanism for regulating the activity of genes, increasing our understanding of the way cells develop and opening the way to new possibilities for therapy.
Using the latest gene sequencing techniques and sophisticated computer ...
Revised location of 1906 rupture of San Andreas Fault in Portola Valley
2013-08-02
SAN FRANCISCO -- New evidence suggests the 1906 earthquake ruptured the San Andreas Fault in a single trace through Portola Village, current day Town of Portola Valley, and indicates a revised location for the fault trace.
Portola Valley, south of San Francisco, has been extensively studied and the subject of the first geological map published in California. Yet studies have offered conflicting conclusions, caused in part by a misprinted photograph and unpublished data, as to the location and nature of the 1906 surface rupture through the area.
"It is critical for ...
New drugs to find the right target to fight Alzheimer's disease
2013-08-02
The future is looking good for drugs designed to combat Alzheimer's disease. EPFL scientists have unveiled how two classes of drug compounds currently in clinical trials work to fight the disease. Their research suggests that these compounds target the disease-causing peptides with high precision and with minimal side-effects. At the same time, the scientists offer a molecular explanation for early-onset hereditary forms of Alzheimer's, which can strike as early as thirty years of age. The conclusions of their research, which has been published in the journal Nature Communications, ...
Researchers create 'soft robotic' devices using water-based gels
2013-08-02
Researchers from North Carolina State University have developed a new technique for creating devices out of a water-based hydrogel material that can be patterned, folded and used to manipulate objects. The technique holds promise for use in "soft robotics" and biomedical applications.
"This work brings us one step closer to developing new soft robotics technologies that mimic biological systems and can work in aqueous environments," says Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing ...
Largest neuronal network simulation to date achieved using Japanese supercomputer
2013-08-02
By exploiting the full computational power of the Japanese supercomputer, K Computer, researchers from the RIKEN HPCI Program for Computational Life Sciences, the Okinawa Institute of Technology (OIST) in Japan and Forschungszentrum Jülich in Germany have carried out the largest general neuronal network simulation to date.
The simulation was made possible by the development of advanced novel data structures for the simulation software NEST. The relevance of the achievement for neuroscience lies in the fact that NEST is open-source software freely available to every scientist ...
LAST 30 PRESS RELEASES:
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology
Climate fee on food could effectively cut greenhouse gas emissions in agriculture while ensuring a social balance
Harnessing microwave flow reaction to convert biomass into useful sugars
Unveiling the secrets of bone strength: the role of biglycan and decorin
Revealing the “true colors” of a single-atom layer of metal alloys
New data on atmosphere from Earth to the edge of space
Self-destructing vaccine offers enhanced protection against tuberculosis in monkeys
Feeding your good gut bacteria through fiber in diet may boost body against infections
Sustainable building components create a good indoor climate
High levels of disordered eating among young people linked to brain differences
Hydrogen peroxide and the mystery of fruit ripening: ‘Signal messengers’ in plants
T cells’ capability to fully prevent acute viral infections opens new avenues for vaccine development
Study suggests that magma composition drives volcanic tremor
Sea surface temperatures and deeper water temperatures reached a new record high in 2024
Connecting through culture: Understanding its relevance in intercultural lingua franca communication
Men more than three times as likely to die from a brain injury, new US study shows
Tongue cancer organoids reveal secrets of chemotherapy resistance
Applications, limitations, and prospects of different muscle atrophy models in sarcopenia and cachexia research
FIFAWC: A dataset with detailed annotation and rich semantics for group activity recognition
Transfer learning-enhanced physics-informed neural network (TLE-PINN): A breakthrough in melt pool prediction for laser melting
Holistic integrative medicine declaration
Hidden transport pathways in graphene confirmed, paving the way for next-generation device innovation
New Neurology® Open Access journal announced
[Press-News.org] NASA seeing which way the wind blowsNew Doppler radar takes flight on this summer's HS3 mission