PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Materials break, then remake, bonds to build strength

2013-08-05
(Press-News.org) DURHAM, N.C. -- Microscopic tears in a new kind of man-made material may actually help the substance bulk up like a bodybuilder at the gym.

"We've shown how normally destructive mechanical forces can be channeled to bring about stronger materials," said Duke chemist Steve Craig, who led the research. "The material responses are like Silly Putty transforming into a solid as stiff as the cap of a pen or a runny liquid transforming into soft Jell-O."

Scientists could one day use the stress-induced strength from these new materials to make better fluids such as engine oil, or soft-structure substances such as artificial heart valves. Materials like this wear out over time because of the repeated mechanical forces they experience during use. But Craig said if a material had properties to slow down its destruction, it would greatly improve quality of life.

It is the first time scientists have used force-induced chemistry within a material to make it stronger in response to stress. The results appear Monday, Aug. 5, 2013, in Nature Chemistry.

In past experiments, Craig's team has gripped and tugged on individual molecules of a material to see how it reacted at the atomic level. Now, the scientists have scaled up the material to contort it macroscopically and see how it responds.

Craig said the response is similar to what happens when a person lifts weights. Those individual stresses trigger biological processes in the muscles that ultimately increase the person's strength.

"It's the same idea chemists would like to use for synthetic materials," he said. "Everyday materials can wear out with repeated stress. Think of your favorite t-shirt or even the oil in your car engine. Wear after wear, fire after fire, these materials break down."

The new man-made materials Craig's team is making have characteristics already in place so that when a stress triggers a bond to break, it breaks in a way that triggers a subsequent reaction forcing the busted atomic bonds to reform new ones.

"It's like snapping a string. But before the string snaps, sites along it form so that when it breaks it can become tied to another string," Craig said.

The scientists first stressed one of the test materials by pulsing high-intensity sound waves through them. The sound waves create bubbles, which typically collapse and break the bonds of the molecules in the material. The forces breaking atoms in the new materials, however, triggered the formation of new bonds, which strengthened the liquid by transforming it into a soft Jell-O consistency.

To test the strength-building ability of a Silly-Putty-like material, the team used a twin-screw extruder, which is as damaging as it sounds. The machine bores two screws into a material and pulls the material through it, destroying some of the material's molecular bonds. Here too, the synthetic material formed more new bonds than those destroyed, becoming much more solid in structure and stronger.

Craig said one drawback to the new materials is that forces deform the material's initial structure. It is stronger at the end, but is not the same shape. The team now plans to create synthetic materials that can repair themselves after stress and retain their original shape, he said.

The team would also like to engineer the material to respond faster. "At this point it takes minutes for the strengthening reactions to start changing the material," Craig said. "We could see it happening as quickly as milliseconds."

###

The research received funding from the Army Research Office, with additional support from the National Science Foundation.

"Mechanochemical Strengthening of a Synthetic Polymer in Response to Typically Destructive Shear Forces," Black Ramirez, A. et. al. Nature Chemistry, August 2013.

DOI: 10.1038/nchem.1720. Once the paper is published electronically, the DOI can be used to retrieve the abstract and full text (abstracts are available to everyone, full text only to subscribers) by adding it to the following url: http://dx.doi.org/.

END



ELSE PRESS RELEASES FROM THIS DATE:

Global investigation reveals true scale of ocean warming

2013-08-05
Warming oceans are causing marine species to change breeding times and shift homes with expected substantial consequences for the broader marine landscape, according to a new global study. The three-year research project, funded by the National Centre for Ecological Analysis and Synthesis in California, has shown widespread systemic shifts in measures such as distribution of species and phenology – the timing of nature's calendar – on a scale comparable to or greater than those observed on land. The report, Global imprint of climate change on marine life, will form ...

Distinct brain disorders biologically linked

2013-08-05
A team of researchers have shown that schizophrenia and a disorder associated with autism and learning difficulties share a common biological pathway. This is one of the first times that researchers have uncovered genetic evidence for the underlying causes of schizophrenia. The team found that a disruption of the gene TOP3B, an exceedingly rare occurrence in most parts of the world, is fairly common in a uniquely genetically distinct founder population from North-eastern Finland. In this population, which has grown in relative isolation for several centuries, the disruption ...

Mechanism offers promising new approach for harnessing the immune system to fight cancer

2013-08-05
St. Jude Children's Research Hospital scientists have discovered a way to target the immune system to shrink or eliminate tumors in mice without causing autoimmune problems. Researchers also found evidence that the same mechanism may operate in humans. The study was published today in the advance online edition of Nature. The findings provide a new target for ongoing efforts to develop immunotherapies to harness the immune system to fight cancer and other diseases. The work focused on white blood cells called regulatory T cells. These specialized cells serve as the ...

Practice makes the brain's motor cortex more efficient, Pitt researchers say

2013-08-05
PITTSBURGH, Aug. 4, 2013 – Not only does practice make perfect, it also makes for more efficient generation of neuronal activity in the primary motor cortex, the area of the brain that plans and executes movement, according to researchers from the University of Pittsburgh School of Medicine. Their findings, published online today in Nature Neuroscience, showed that practice leads to decreased metabolic activity for internally generated movements, but not for visually guided motor tasks, and suggest the motor cortex is "plastic" and a potential site for the storage of motor ...

Mechanism that allows bacteria to infect plants may inspire cure for eye disease

2013-08-05
By borrowing a tool from bacteria that infect plants, scientists have developed a new approach to eliminate mutated DNA inside mitochondria—the energy factories within cells. Doctors might someday use the approach to treat a variety of mitochondrial diseases, including the degenerative eye disease Leber hereditary optic neuropathy (LHON). The research, published online today in Nature Medicine, was funded by the National Eye Institute (NEI), a part of the National Institutes of Health (NIH). Mitochondria convert fuel from food into a form of energy that cells can use. ...

UCSB study finds climate change is causing modifications to marine life behavior

2013-08-05
(Santa Barbara, Calif.) — Oceans cover 71 percent of the Earth's surface, yet our knowledge of the impact of climate change on marine habitats is a mere drop in the proverbial ocean compared to terrestrial systems. An international team of scientists set out to change that by conducting a global meta-analysis of climate change impacts on marine systems. Counter to previous thinking, marine species are shifting their geographic distribution toward the poles and doing so much faster than their land-based counterparts. The findings were published in Nature Climate Change. The ...

Wistar scientists decipher structure of NatA, an enzyme complex that modifies most human proteins

2013-08-05
VIDEO: The structure of NatA, an n-terminal acetyltransferase, is described in a paper published Aug. 4, 2013, in Nature Structural & Molecular Biology. Click here for more information. A team of researchers from Philadelphia and Norway has determined the structure of an enzyme complex that modifies one end of most human proteins and is made at elevated levels in numerous forms of cancer. A study in Nature Structural & Molecular Biology, led by researchers at The Wistar Institute, ...

MIT researchers reveal how the brain keeps eyes on the prize

2013-08-05
Cambridge-- As anyone who has traveled with young children knows, maintaining focus on distant goals can be a challenge. A new study from MIT suggests how the brain achieves this task, and indicates that the neurotransmitter dopamine may signal the value of long-term rewards. The findings may also explain why patients with Parkinson's disease — in which dopamine signaling is impaired — often have difficulty in sustaining motivation to finish tasks. The work is described this week in the journal Nature. Previous studies have linked dopamine to rewards, and have shown ...

Vanderbilt scientists discover potential new way to treat anxiety

2013-08-05
Chemically modified inhibitors of the COX-2 enzyme relieve anxiety behaviors in mice by activating natural "endocannabinoids" without gastrointestinal side effects, Vanderbilt University scientists will report next week. Endocannabinoids are natural signaling molecules that activate cannabinoid receptors in the brain, the same receptors turned on by the active ingredient in marijuana. These receptors are also found in the gastrointestinal system and elsewhere in the body, and there is evidence that they play a role in wide range of physiological and pathological processes, ...

Study reveals potential role of 'love hormone' oxytocin in brain function

2013-08-05
In a loud, crowded restaurant, having the ability to focus on the people and conversation at your own table is critical. Nerve cells in the brain face similar challenges in separating wanted messages from background chatter. A key element in this process appears to be oxytocin, typically known as the “love hormone” for its role in promoting social and parental bonding. In a study appearing online August 4 in Nature, NYU Langone Medical Center researchers decipher how oxytocin, acting as a neurohormone in the brain, not only reduces background noise, but more importantly, ...

LAST 30 PRESS RELEASES:

Fig trees convert atmospheric CO2 to stone

Intra-arterial tenecteplase for acute stroke after successful endovascular therapy

Study reveals beneficial microbes that can sustain yields in unfertilized fields

Robotic probe quickly measures key properties of new materials

Climate change cuts milk production, even when farmers cool their cows

Frozen, but not sealed: Arctic Ocean remained open to life during ice ages

Some like it cold: Cryorhodopsins

Demystifying gut bacteria with AI

Human wellbeing on a finite planet towards 2100: new study shows humanity at a crossroads

Unlocking the hidden biodiversity of Europe’s villages

Planned hydrogen refuelling stations may lead to millions of euros in yearly losses

Planned C-sections increase the risk of certain childhood cancers

Adults who have survived childhood cancer are at increased risk of severe COVID-19

Drones reveal extreme coral mortality after bleaching

New genetic finding uncovers hidden cause of arsenic resistance in acute promyelocytic leukemia

Native habitats hold the key to the much-loved smashed avocado’s future

Using lightning to make ammonia out of thin air

Machine learning potential-driven insights into pH-dependent CO₂ reduction

Physician associates provide safe care for diagnosed patients when directly supervised by a doctor

How game-play with robots can bring out their human side

Asthma: patient expectations influence the course of the disease

UNM physician tests drug that causes nerve tissue to emit light, enabling faster, safer surgery

New study identifies EMP1 as a key driver of pancreatic cancer progression and poor prognosis

XPR1 identified as a key regulator of ovarian cancer growth through autophagy and immune evasion

Flexible, eco-friendly electronic plastic for wearable tech, sensors

Can the Large Hadron Collider snap string theory?

Stuckeman professor’s new book explores ‘socially sustainable’ architecture

Synthetic DNA nanoparticles for gene therapy

New model to find treatments for an aggressive blood cancer

Special issue of Journal of Intensive Medicine analyzes non-invasive respiratory support

[Press-News.org] Materials break, then remake, bonds to build strength